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Performing proximity queries on a 3D surface has gained significant attention from both academic and industry.

The height map is one fundamental 3D surface representation with many advantages over others such as

the point cloud and Triangular-Irregular Network (TIN ). In this paper, we study the shortest path query on a

height map. Since performing proximity queries using the shortest path on a height map is costly, we propose

a simplification algorithm on the height map to accelerate it. We also propose a shortest path query algorithm

and algorithms for answering proximity queries on the original/simplified height map. Our experiments show

that our simplification algorithm is up to 21 times and 5 times (resp. 412 times and 7 times) better than the

best-known adapted point cloud (resp. TIN ) simplification algorithm in terms of the simplification time and

output size (the size of the simplified surface), respectively. Performing proximity queries on our simplified

height map is up to 5 times and 1,340 times quicker than on the simplified point cloud and the simplified TIN
with an error at most 10%, respectively.
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1 Introduction
Performing proximity queries on a 3D surface has gained significant attention from both academic

and industry [65, 72]. Academic researchers studied different types of proximity queries [31, 32,

51, 59, 65, 68, 69, 72], including shortest path queries [28, 44, 45, 49, 50, 54, 55, 64–67, 70–72, 74],
k-Nearest Neighbor (kNN ) queries [31, 32, 59, 65, 68] and range queries [51, 61]. In industry, Google

Earth [9] and Metaverse [16] employ shortest paths passing on 3D surfaces (e.g., Earth and virtual

reality) for user navigation.

Heightmap, point cloud andTIN : There are different representations of a 3D surface, including

height map, point cloud [72] and Triangular-Irregular Network (TIN ) [65, 68, 69]. Figure 1 (a) shows

a 3D surface in a 20km × 20km region in Gates of the Arctic [57] national park, USA. Figure 1 (b)

shows the height map representation of this surface. Consider a 2D plane with 9 × 9 grid cells in

this region. Each cell has 2D coordinate values representing 2D coordinate values of its center point,
and a grayscale pixel color representing its elevation value (e.g., calculated using a simple linear

interpolation using the pixel color), meaning the height projected from this center point on the 3D

surface. If this value is larger, this pixel’s color is brighter. Besides, each cell has 8 neighbors, shown

as blue points in Figure 1 (b). All these cells form a height map. Figure 1 (c) shows this height map

in bird’s eye view. Figure 1 (d) shows the point cloud representation of this surface. Each cell in the
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Fig. 1. (a) A 3D surface, (b) a height map, (c) a height map in bird’s eye view, (d) a point cloud, (e) a TIN, (f) a
height map graph, (g) a simplified height map and (h) a simplified height map in bird’s eye view

height map could be one-to-one mapped to a 3D point, where the 𝑥- and 𝑦- coordinate values of this

point are the 2D coordinate values of the center point of this cell, and the 𝑧-coordinate of this point

is the elevation value of this cell [26, 47, 63, 77]. This is the best-known exact height map to point

cloud conversion algorithm that runs in𝑂 (𝑛) time, where 𝑛 is the number of cells in the height map.

The best-known approximate conversion algorithm uses machine learning approach, e.g., uniform

random sampling [38, 48] for acceleration. But, the converted point cloud is an approximated

representation of the height map without a bound guarantee, since it randomly selects some (not
all) cells for mapping. This runs in 𝑂 (𝑛𝑟 ) time, where 𝑛𝑟 is the number of randomly selected cells.

Figure 1 (e) shows the TIN representation of this surface. A TIN has a set of contiguous triangulated

faces, where each face has three edges connecting at three vertices. In practice, the TIN is converted

from the point cloud [72] via triangulation [35, 62, 72] where all vertices of faces are the points in

the point cloud. This runs in 𝑂 (𝑛) time. If the triangulation is applied on the approximated point

cloud, this runs in 𝑂 (𝑛𝑟 ) time.

1.1 Advantages of Height Map
Height maps offer several advantages over point clouds and TIN s.

(1) Compared with point cloud datasets, there are more height map datasets available (e.g., there

are 50M height map datasets but only 20M point cloud datasets in an open data 3D surface dataset

platform called OpenDEM [17]), with four reasons.

(i) Longer history of the height map. The height map and point cloud were introduced in 1884 [2]

and 1960 [13], respectively. So, more height map datasets are available due to the earlier adoption.

(ii) Lower cost of obtaining a height map dataset. The height map dataset could be obtained from

either optical images of cost USD $25 [21] captured by an optical satellite or radar images of cost

USD $3,300 [8] captured by a radar satellite. But, the point cloud dataset could be obtained only

from radar images captured by a radar satellite (if no conversion operation from the height map

to the point cloud is involved). The image cost difference is due to the satellite launching cost

difference: USD $0.4 billion [14] for an optical satellite and USD $1.5 billion [1] for a radar satellite.

(iii) More region coverage of the height map datasets. Since optical and radar satellites cover

100% [3] and 80% [20] of Earth’s land area, respectively, height map datasets cover more regions

compared with point cloud datasets. For example, high-latitude regions (e.g., Gates of the Arctic

national park in the northern part of Alaska, USA) are regions covered by height map datasets but

not point cloud datasets [22]. We perform a snowfall evacuation case study there, using the only

available height map datasets for evacuation.

(iv) Additional conversion time from height map datasets to point cloud datasets. In our experiment,

converting height map datasets to point cloud datasets [26, 47, 63, 77] for radar satellites’ uncovered
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region takes 21 years
1
. It can be fast (e.g., 42s for a region of 1km

2
) for a small area and we need

it once. But, in our evacuation case study, we capture the height map (in only 4s for a region of

1 km
2
[53]) after snowfall due to avalanches (i.e., the height map is updated), and the weather

changes suddenly (that complicates rescue efforts) in 1s [4]. We aim to avoid the conversion to

minimize sudden weather changes and save more lives.

(2) Compared with TIN datasets (i.e., usually converted from point cloud datasets), height map

datasets are easier to access since satellites can capture them directly. So, more height map datasets

are available, and the 4 reasons above also apply to TIN s. Height maps also use less hard disk space,
since they store cell information, while TIN s store vertex, edge and face information.

1.2 Our Focus
1.2.1 Height map shortest path query. In this paper, we study the shortest path query on the

height map. There are two issues.

(1) Finding the shortest path passing on the height map. There is no existing study finding the

shortest path directly on a height map. Most (if not all) algorithms [47, 56, 63, 77] adapt shortest path

algorithms on the point cloud [72] or TIN [28, 44–46, 50, 66, 67, 71, 74] by converting the height

map to point cloud and TIN, and then perform the shortest path query on the converted 3D surfaces.

We propose a height map graph in Figure 1 (f). For each cell in the height map, we construct a

corresponding 3D vertex in the graph. For each pair of neighboring cells, we create an edge between

their corresponding vertices with a weight equal to the Euclidean distance between them. Based

on this graph, we could find the shortest path by Dijkstra’s algorithm [33]. Our experiments show

that computing the shortest path passing on a height map with 0.5M cells needs 3s, but computing

the shortest path passing on a point cloud (see Figure 1 (d)) converted from this height map [72]

needs 3.4s due to data conversion. Besides, computing the shortest surface path passing on a TIN
(see Figure 1 (e)) converted from this height map [28, 66, 74] needs 280s ≈ 4.6 min, since the height

map’s structure is simpler.

(2) Improving in other proximity queries. In our experiments, using shortest paths to answer kNN
or range query for 10k query objects on a height map with 50k cells need 4,400s ≈ 1.2 hours, i.e.,
very long. Thus, we propose a simplification process on the height map.

1.2.2 Height map simplification. In this paper, we also study how to simplify the height map.

If we merge nearby cells with similar elevation values (with redundant information) into one cell,

then the number of cells is reduced and Dijkstra’s algorithm on this simplified height map is faster.

Figure 1 (g) shows a simplified height map of the same surface, where cell 𝑋 is merged from 6 cells

(whose elevation value is the average of these 6 cells). Figure 1 (h) shows this simplified height map

in bird’s eye view. Consider a pair of points 𝑎 and 𝑐 . There is a relative error called the distance
error ratio of the distance calculated by a studied algorithm compared with the ground-truth or

optimal distance, i.e., the approximate shortest distance between 𝑎 and 𝑐 on the simplified height

map in Figure 1 (g) compared with the (exact) shortest distance between 𝑎 and 𝑐 on the original

height map in Figure 1 (b).

Given an error parameter 𝜖 ∈ [0, 1], we study how to simplify the height map so that the distance

error ratio for each pair of points on the original height map is at most 𝜖 . There are two challenges.

(1) Simplifying the height map with a small size efficiently. There is no existing study focusing

on simplifying a height map. The only closely related work are the simplification algorithms

on the point cloud [24, 72] or TIN [32, 40, 45, 49]. We adapt them by converting the height

1
Since the total Earth’s land area is 149M km

2
[7], the total areas covered by optical satellites but not radar satellites are 30M

km
2
(i.e., 149M km

2 × (100% - 80%)). In our experiment, converting a height map dataset in a region of 1 km
2
(with 3m ×

3m resolution) to a point cloud dataset takes 42s. Thus, the conversion time is 42s/km
2× 30M km

2= 1.26 ×109s ≈ 21 years.
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map to point cloud and TIN, and then performing the original simplification algorithms on the

converted 3D surfaces. But, the size of the simplified point cloud and TIN are large since they

lack optimization techniques, resulting in large shortest path query time on the simplified 3D

surfaces. The simplification time of the point cloud and TIN simplification algorithms are large

since they lack pruning techniques and TIN simplification algorithms involve expensive TIN
re-triangulation [35, 62, 72].

(2) Defining the neighborhoods of cells in the simplified height map. In the original height map

(Figure 1 (b)), it is clear to understand the neighborhoods of each cell. But, in the simplified height

map (Figure 1 (g)), since each merged cell can be adjacent to many different cells, we need to define

clearly neighborhoods of each (merged/non-merged) cell for the shortest path query.

1.3 Contribution and Organization
We summarize our contributions as follows.

(1) We are the first to study the shortest path query directly on the height map. We also adopt a

height map simplification process so that the distance error ratio for each pair of points on the

original height map is at most 𝜖 . We show that this process is NP-hard.
(2) We propose an 𝜖-approximate height map simplification algorithm called Height Map

Simplification Algorithm (HM-Simplify). It can significantly reduce the number of cells of the

simplified height map, i.e., reduce the output size (the size of the simplified height map), to further

reduce the shortest path query time on the simplified height map using a novel cell merging

technique (by considering cell information of height maps) for optimization. It can also efficiently

reduce the simplification time using the novel cell merging technique and an efficient checking

technique during simplification (by considering neighbor information of height maps) for pruning.

We also propose a shortest path query algorithm called Height Map Shortest Path Query Algorithm
(HM-SP) on the original/simplified height map. It can efficiently reduce the shortest path query time

on the simplified height map using an efficient implicit edge insertion technique (by considering

neighbor information of height maps and the single-source-all-destination feature of Dijkstra’s

algorithm) for pruning. We also design algorithms for answering kNN and range queries on the

original/simplified height map. It can also efficiently reduce the proximity query time on the

original/simplified height map using an efficient parallel computation technique (by considering

the single-source-all-destination feature of Dijkstra’s algorithm) for pruning.

(3)We give theoretical analysis on (i) algorithm HM-Simplify’s simplification time, the number

of cells in the simplified height map, output size, simplification memory and error guarantee, and

(ii) algorithm HM-SP and proximity query algorithms’ query time, memory and error guarantee.

(4) Algorithm HM-Simplify outperforms the best-known adapted point cloud [24, 72] and

TIN [42, 45] simplification algorithm concerning the simplification time and output size. Per-

forming proximity queries on the simplified height map is much quicker than the best-known

algorithms [28, 66, 72, 74] on the simplified point cloud and the simplified TIN. Our experiments

show that given a height map with 50k cells, the simplification time and output size are 250s ≈
4.6 min and 0.07MB for algorithm HM-Simplify, but are 5,250s ≈ 1.5 hours and 0.35MB for the

best-known adapted point cloud simplification algorithm [24, 72], and 103,000s ≈ 1.2 days and

0.5MB for the best-known adapted TIN simplification algorithm [42, 45]. The proximity query time

of 10k objects is 50s on the simplified height map, 250s ≈ 4.2 min on the simplified point cloud and

67,000s ≈ 18.6 hours on the simplified TIN.
The remainder of the paper is organized as follows. Section 2 gives the problem definition.

Section 3 covers the related work. Section 4 presents our algorithms. Section 5 discusses the

experimental results and Section 6 concludes the paper.
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2 Problem Definition
2.1 Notation and Definitions
2.1.1 Height map. Consider a height map 𝐻 = (𝐶, 𝑁 (·)) on a 2D plane containing a set of cells 𝐶
with size 𝑛, and a neighbor cells (hash) table [30] 𝑁 (·). In 𝐻 , each cell 𝑐 ∈ 𝐶 has 2D coordinate values
(representing 2D coordinate values of its center point) and a grayscale pixel color (representing its
elevation value), denoted as 𝑐.𝑥 , 𝑐.𝑦 and 𝑐.𝑧, respectively. Given cell 𝑐 ∈ 𝐶 , 𝑁 (𝑐) returns 𝑐’s neighbor
cells in 𝑂 (1) time, and it is initialized to be 𝑐’s nearest 8 surrounding cells on 𝐻 . Figure 2 (a) shows

a height map with 9 cells. For point 𝑝 on cell 𝑐 , 6 orange and 2 red points form 𝑁 (𝑐).
We define 𝐺 to be the height map graph of 𝐻 . For each cell 𝑐 ∈ 𝐶 , we create a vertex 𝑣𝑐 in 𝐺

whose 𝑥-, 𝑦- and 𝑧-coordinate values are defined to 𝑐.𝑥 , 𝑐.𝑦 and 𝑐.𝑧, respectively. For each cell 𝑐 ∈ 𝐶
and each cell 𝑐′ ∈ 𝑁 (𝑐), we create an edge between vertex 𝑣𝑐 and vertex 𝑣𝑐′ in 𝐺 (corresponding to

𝑐 and 𝑐′) with a weight equal to the Euclidean distance between 𝑣𝑐 and 𝑣𝑐′ , and 𝑐 and 𝑐
′
are said to

be adjacent. The graphs in Figures 2 (a) and (b) are 𝐺 on the 2D plane and in a 3D space. Given a

pair of points 𝑠 and 𝑡 on 𝐻 , let Π(𝑠, 𝑡 |𝐻 ) be the (exact) shortest path between them passing on (𝐺

of) 𝐻 . Let | · | be a path’s distance (e.g., |Π(𝑠, 𝑡 |𝐻 ) | means Π(𝑠, 𝑡 |𝐻 )’s distance). Figures 2 (a) and (b)

show Π(𝑠, 𝑡 |𝐻 ) in green line.
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Fig. 2. (a) A height map, (b) a height map graph, (c) a point cloud and (d) a TIN
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Fig. 3. Cell merging

2.1.2 Simplified height map. Given 𝐻 , we can obtain a simplified height map 𝐻 = (𝐶, 𝑁 (·)) by
merging some adjacent cells (deleting these cells and adding a new larger cell covering these cells)

in 𝐻 . 𝐶 and 𝑁 (·) are initialized as 𝐶 and 𝑁 (·), and are updated during simplification. Figures 3 (a)

and (b) show 𝐻 and 𝐻 , where the blue cell in 𝐻 is merged from 2 cells in 𝐻 .

A cell in 𝐻 that is deleted from (resp. remaining in) 𝐻 is referred as a deleted (resp. remaining)
cell. A cell in 𝐻 that covers some adjacent deleted and/or previously added cells is referred as an

added cell. These adjacent deleted cells belong to the added cell. A property of a deleted cell is that
each deleted cell only belongs to one added cell. In Figures 3 (a) and (b), we merge cells 𝑎 and 𝑏 to

cell 𝑒 , 10 orange and red points (around 𝑒) form all cells in 𝑁 (𝑒), {𝑎, 𝑏} are deleted cells, all other

cells in𝐶 except {𝑎, 𝑏} are remaining cells, 𝑒 is an added cell, and {𝑎, 𝑏} belong to 𝑒 . The coordinate
and elevation values of the added cell are weighted averages of those of the adjacent deleted cells

(if these adjacent deleted cells contain a previously added cell 𝑐 , the weight is the number of cells in

𝐻 belonging to 𝑐 ; otherwise, the weight is 1). In Figures 3 (b), we use the coordinate and elevation

values of 𝑎, 𝑏 with weight equal to 1 to calculate those values for 𝑒 . If we keep merging 𝑒 with

other cells, the weight of 𝑒 is 2, since the number of cells in 𝐻 belonging to 𝑒 is 2. We denote a set

of remaining cells and added cells as 𝐶rema and 𝐶add, so 𝐶 = 𝐶rema ∪𝐶add. A set of deleted cells is

denoted as 𝐶 −𝐶rema. Given a cell 𝑐 ∈ 𝐻 , we define 𝑐̃ be the estimated cell of 𝑐 (on 𝐻 ). In Figures 3

(a) and (b), we have 𝑎 and 𝑎.

Similar to 𝐺 , let 𝐺 be the simplified height map graph of 𝐻 . We use 𝐶 and 𝑁 (·) in the definition

of 𝐺 to obtain 𝐺 ’s vertices and edges. The graphs in Figures 3 (a) and (b) are 𝐺 and 𝐺 , respectively.

Given a pair of points 𝑠̃ and 𝑡̃ on 𝐻 , let Π (̃𝑠, 𝑡̃ |𝐻 ) be the approximate shortest path between them

passing on (𝐺 of) 𝐻 . Figure 3 (b) shows Π(𝑐̃, 𝑑 |𝐻 ) in blue line. A notation table can be found in our

technical report [73].
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2.2 Problem
We introduce the concept of 𝜖-approximate simplified height map in Definition 1 to describe that 𝐻

guarantees that for each pair of points on 𝐻 , their distance error ratio is at most 𝜖 .

Definition 1 (𝜖-Approximate Simplified Height Map Definition). Given 𝐻 , 𝐻 and 𝜖 , 𝐻 is
said to be an 𝜖-approximate simplified height map of 𝐻 (or 𝐻 is said to be an 𝜖-approximation of 𝐻 ) if
and only if for each pair of points 𝑠 and 𝑡 on 𝐻 ,

(1 − 𝜖) |Π(𝑠, 𝑡 |𝐻 ) | ≤ |Π (̃𝑠, 𝑡̃ |𝐻 ) | ≤ (1 + 𝜖) |Π(𝑠, 𝑡 |𝐻 ) |. (1)

We have the following problem, which is NP-hard.

Problem 1 (Height Map Simplification Problem). Given 𝐻 and 𝜖 , we want to find an 𝜖-
approximate simplified height map 𝐻 of 𝐻 with the minimum number of cells.

Theorem 2.1. The height map simplification problem is NP-hard.

Proof Sketch. We transform Minimum T-Spanner Problem [27] (NP-complete) to our problem

in polynomial time for proving. The detailed proof appears in our technical report [73]. □

3 Related Work
3.1 Point Cloud and TIN
Let 𝑃 be a point cloud converted from 𝐻 by cell mapping [26, 47, 63, 77], and 𝑇 be a TIN converted

from 𝑃 by point triangulation [35, 62, 72]. Given a pair of points 𝑠 and 𝑡 on 𝑃 , let Π(𝑠, 𝑡 |𝑃) be the
shortest path between them passing on (point cloud graph [72] of) 𝑃 . The height map graph and

point cloud graph are the same. Given a pair of vertices 𝑠 and 𝑡 on 𝑇 , let Π(𝑠, 𝑡 |𝑇 ) and Π𝑁 (𝑠, 𝑡 |𝑇 )
be the shortest surface path [45] (passing on faces) of 𝑇 and shortest network path [45] (passing

on edges) of 𝑇 between them. Their distances are called the shortest surface and network distance,
respectively. Let 𝜃 be the smallest interior angle of a triangle of 𝑇 . Figure 2 (c) shows a 𝑃 with

Π(𝑠, 𝑡 |𝑃) in green line, and Figure 2 (d) shows a 𝑇 with Π(𝑠, 𝑡 |𝑇 ) in green line and Π𝑁 (𝑠, 𝑡 |𝑇 ) in
purple line.

Given a pair of points 𝑠 and 𝑡 on𝐻 , since the height map graph is the same as the point cloud graph,

we know |Π(𝑠, 𝑡 |𝐻 ) | = |Π(𝑠, 𝑡 |𝑃) |. According to Lemma 4.3 of study [72], we know |Π(𝑠, 𝑡 |𝐻 ) | ≤
𝛼 · |Π(𝑠, 𝑡 |𝑇 ) |, where 𝛼 = max{ 2

sin𝜃
, 1

sin𝜃 cos𝜃
}, and |Π(𝑠, 𝑡 |𝐻 ) | ≤ |Π𝑁 (𝑠, 𝑡 |𝑇 ) |. But, |Π(𝑠, 𝑡 |𝐻 ) | can

be larger or smaller than |Π(𝑠, 𝑡 |𝑇 ) |. In Figures 1 (e) and (f) (see blue lines), |Π(𝑐, 𝑒 |𝑇 ) | > |Π(𝑐, 𝑒 |𝐻 ) |,
but |Π(𝑑, 𝑓 |𝑇 ) | < |Π(𝑑, 𝑓 |𝐻 ) |.

3.2 Height Map Shortest PathQuery Algorithms
There is no existing study finding the shortest path directly on a height map. Existing studies [47, 56,

63, 77] adapt shortest path algorithms on the point cloud [72] or TIN [28, 44–46, 50, 66, 67, 71, 74]

by converting the height map to a point cloud or a TIN, and then computing the shortest path

passing on the converted 3D surfaces (by defining their 3D surfaces first, e.g., point clouds and

TIN s, and find paths under their 3D surfaces).

3.2.1 Point cloud shortest path query algorithm. The best-known exact point cloud shortest

path query algorithm called Point Cloud Shortest Path Query Algorithm (PC-SP) [72] uses Dijkstra’s
algorithm on the point cloud graph for querying in 𝑂 (𝑛 log𝑛) time.

3.2.2 TIN shortest surface path query algorithms. (1) Exact algorithms: Two studies use

continuous Dijkstra’s [50] and checking window [67] algorithms for querying both in 𝑂 (𝑛2 log𝑛)
time. The best-known exact TIN shortest surface path query algorithm called TIN Exact Shortest

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 244. Publication date: September 2025.



Efficient ProximityQueries on Simplified Height Maps 244:7

Surface Path Query Algorithm (TIN-ESSP) [28, 66, 74] uses a line to connect the source and destination
on a 2D TIN unfolded by the 3D TIN, for querying in 𝑂 (𝑛2) time.

(2) Approximate algorithms: All algorithms [44, 46, 71] use discrete Steiner points to construct a

graph and use Dijkstra’s algorithm for querying. The best-known (1 + 𝜖)-approximate TIN shortest

surface path query algorithm called TIN Approximate Shortest Surface Path Query Algorithm (TIN-
ASSP) [44, 71] runs in𝑂 ( 𝑙max𝑛

𝜖𝑙min
√
1−cos𝜃

log( 𝑙max𝑛

𝜖𝑙min
√
1−cos𝜃

)) time, where 𝑙max/𝑙min are the longest/shortest

edge’s length of the TIN, respectively.

3.2.3 TIN shortest network path query algorithm. Network paths are surface paths restricted

to TIN ’s edge without traversing the faces, resulting in an approximate path. The best-known

approximate TIN shortest network path query algorithm called TIN Shortest Network Path Query
Algorithm (TIN-SNP) [45] uses Dijkstra’s algorithm on TIN ’s edge for querying in 𝑂 (𝑛 log𝑛) time.

Adaptations: (1) Given a Height Map, we adapt these four algorithms to be algorithms PC-
SP-Adapt(HM) [72], TIN-ESSP-Adapt(HM) [28, 66, 74], TIN-ASSP-Adapt(HM) [44, 71] and TIN-SNP-
Adapt(HM) [45], by converting the height map to a point cloud or a TIN, and then computing the

shortest path passing on the point cloud or TIN. (2) Given a height map without data conversion,

algorithm TIN-ESSP cannot be directly adapted to the height map since no face can be unfolded in

a height map. But, algorithms PC-SP, TIN-ASSP and TIN-SNP can be directly adapted to the height

map (using a height map graph), and they become algorithm HM-SP (since they are Dijkstra’s

algorithms).

Drawback: All algorithms are very slow. Our experiments show that for a height map with

50k cells, answering kNN queries for all 10k objects needs 4,400s ≈ 1.2 hours, 380,000s ≈ 4.3 days,

70,000s ≈ 19.4 hours and 33,000s ≈ 9.2 hours for algorithms PC-SP-Adapt(HM), TIN-ESSP-Adapt(HM),
TIN-ASSP-Adapt(HM) and TIN-SNP-Adapt(HM), respectively.

3.3 Height Map Simplification Algorithms
There is no existing study focusing on simplifying a height map. The only closely related work

are simplification algorithms on the point cloud [24, 72] or TIN [32, 40, 45, 49]. They iteratively

remove a point in a point cloud, or remove a vertex 𝑣 in a TIN and use triangulation [35, 62, 72]

to form new faces among the previous adjacent vertices of 𝑣 . Point Cloud Simplification Algorithm
(PC-Simplify) [24, 72] is the best-known point cloud simplification algorithm. TIN shortest Network
distance Simplification Algorithm (TIN-NSimplify) [45] is the most efficient TIN simplification algo-

rithm. By using shortest surface distances, we obtain the best-known TIN simplification algorithm

TIN shortest Surface distance Simplification Algorithm (TIN-SSimplify) [42, 45]. We adapt them by

converting the height map to point cloud and TIN, and then performing them for simplification on

the converted 3D surfaces.

3.3.1 Algorithm PC-Simplify. Study [24] finds a TIN with a minimum number of vertices

without TIN triangulation, it indeed is a point cloud simplification algorithm. But, each point cloud

simplification iteration checks whether the 𝑧-coordinate value difference of each point on the

original and simplified point cloud is at most 𝜖 . We adapt it by retaining its simplification process

and constructing a point cloud graph [72], so when it removes a point 𝑝 , we remove 𝑝’s adjacent

edges in the graph, and check for each pair of points (we simplify to “each pair of previous adjacent
points of 𝑝”), whether the relative error of the shortest distance between them on the simplified

and original point cloud is at most 𝜖 . Its simplification time is 𝑂 (𝑛2 log𝑛) and output size is 𝑂 (𝑛).

3.3.2 Algorithm TIN-NSimplify. Each TIN simplification iteration checks for “each pair of

vertices” on the original TIN, whether the relative error of the shortest network distance between
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them on the simplified and original TIN is at most 𝜖 . We simplify to “each pair of previous adjacent
vertices of the removed vertex 𝑣”. Its simplification time is 𝑂 (𝑛2 log𝑛) and output size is 𝑂 (𝑛).

3.3.3 Algorithm TIN-SSimplify. Similarly, we simplify to “arbitrary pair of points
2
on faces

including previous adjacent vertices of 𝑣”. We further simplify it by placing Steiner points on these

faces (using any-to-any points TIN shortest surface path query technique [42]), and check related

to “each pair of Steiner points”. Its simplification time is 𝑂 ( 𝑛3

sin𝜃
√
𝜖
log

1

𝜖
) and output size is 𝑂 (𝑛).

Adaptations: (1) Given a Height Map, we adapt these three algorithms to be algorithms PC-
Simplify-Adapt(HM) [24, 72], TIN-NSimplify-Adapt(HM) [45] and TIN-SSimplify-Adapt(HM) [42, 45],
by converting the height map to a point cloud or a TIN, and then applying the corresponding

algorithms for point cloud or TIN simplification. (2) Given a height map without data conversion,

algorithm PC-Simplify can be directly adapted to the height map (using a height map graph), and it

performs the same as algorithm PC-Simplify on point cloud (which has a large simplification time

since it lacks pruning techniques). But, algorithms TIN-NSimplify and TIN-SSimplify cannot, since

no vertices can be deleted and no new faces can be created in a height map.

Drawbacks: (1) Large output size: All algorithms lack optimization techniques, so their simplified

point cloud and TIN have a large size, resulting in large shortest path query time on the simplified

3D surfaces. This is because they only remove points or vertices without adding new ones, so the

simplified 3D surfaces differs a lot from the original one, limiting further simplification. (2) Large
simplification time: All algorithms lack pruning techniques, resulting in a large simplification time.

This is because they remove only one point or vertex per iteration, yielding many distance checking

iterations. They cannot remove many points or vertices at once; otherwise the simplified point

cloud or TIN changes a lot. In addition, algorithms TIN-NSimplify-Adapt(HM) and TIN-SSimplify-
Adapt(HM) involve expensive TIN re-triangulation, so their simplification time is even larger. Our

experiments show that for a height map with 50k cells, the simplification time of algorithms PC-
Simplify-Adapt(HM), TIN-NSimplify-Adapt(HM), TIN-SSimplify-Adapt(HM) and HM-Simplify (ours)

are 5,250s ≈ 1.5 hours, 7,100s ≈ 2 hours, 103,000s ≈ 1.2 days and 250s ≈ 4.6 min, respectively. The

kNN query time of 10k objects on the simplified point cloud, TIN, or height map are 250s ≈ 4.2 min,

16,800s ≈ 4.7 hours, 67,000s ≈ 18.6 hours and 50s, respectively.

Solution: If they add new points or vertices by following our novel cell merging technique, their

output size is similar to ours. Then, they can remove more than one point or vertex per iteration,

and the simplification time of algorithm PC-Simplify-Adapt(HM) is similar to ours, but the other

two remain high due to expensive re-triangulation. Thus, all algorithms perform worse than ours

in terms of output size and simplification time.

4 Methodology
4.1 Overview
4.1.1 Two phases. There are two phases for our framework.

(1) Simplification phase using algorithm HM-Simplify: In Figure 4 and Figures 5 (a) - (f),

given 𝐻 , we generate 𝐻 by iteratively cell merging whenever 𝐻 is an 𝜖-approximation of 𝐻 (𝐻 is

deleted).

(2) Shortest path query phase using algorithm HM-SP : In Figure 4 and Figure 5 (g), given 𝐻 ,

a pair of points 𝑠 and 𝑡 on 𝐻 , we first calculate 𝑠 and 𝑡 ’s estimated points 𝑠̃ and 𝑡̃ on 𝐻 , and then

use Dijkstra’s algorithm [33] on 𝐻 to compute Π (̃𝑠, 𝑡̃ |𝐻 ).

2
Given a pair of vertices far away from 𝑣, the shortest surface path between them may pass on faces including previous

adjacent vertices of 𝑣 but not on the previous adjacent vertices of 𝑣. So, only checking the shortest surface distance related

to the latter is not sufficient.
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Simplification
phase

Shortest path
query phase

Height map 𝐻 Simplification Simplified height map ෩𝐻, containing
table 𝒪(·) and belong table 𝒪-1(·)

෩𝐻, points 𝑠 and 𝑡 on 𝐻, 𝒪(·) and 𝒪-1(·) Point estimation Estimated ǁ𝑠 and ǁ𝑡 on ෩𝐻
Path querying The shortest path between ǁ𝑠 and ǁ𝑡 passing on ෩𝐻

Fig. 4. Overview of algorithm HM-Simplify and HM-SP

4.1.2 Two components. There are two hash tables involved.
(1) The containing table O(·): Given an added cell 𝑐 in 𝐻 , O(𝑐) returns the set of deleted cells

{𝑝1, 𝑝2, . . . } in 𝐻 belonging to 𝑐 in 𝑂 (1) time. In Figure 5 (b), we merge {𝑎, 𝑏} to cell 𝑐 , the deleted

cells {𝑎, 𝑏} belongs to the added cell 𝑐 , so O(𝑐) = {𝑎, 𝑏}.
(2) The belonging table O

−1
(·): Given a deleted cell 𝑐 in 𝐻 , O−1 (𝑐) returns the added cell 𝑐′ in

𝐻 such that 𝑐 belongs to 𝑐′ in 𝑂 (1) time. In Figure 5 (b), O−1 (𝑎) = 𝑐 .

c 𝒪(c)
c {a, b}
f {a, b, d, 

e, …}
h {g, …}
m {i, …}
… …

c 𝒪 -1(c)
a c⇨f
b c⇨f
d f
e f
g h
i m

… …
(a)

𝒪 -1(·)

𝒪(·)Simplification phase Shortest path
query phase

(b) (c) (d) (e) (f) (g)

b
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d e

i l

f h

j

g
k

l
j
m
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i

g

k
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p

~

~
~

~

~
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Fig. 5. Details of algorithm HM-Simplify and HM-SP

4.2 Key Idea
4.2.1 Significant output size reducing for algorithmHM-Simplify. It can significantly reduce
the number of cells in 𝐻 (output size), to further reduce the shortest path query time of algorithm

HM-SP on𝐻 using a novel cell merging technique with two merging types for optimization. Since we

delete some cells and create a newly added cell during merging, 𝐻 remains similar to 𝐻 , enabling

further merging. The following two types discuss which cells to delete and the position of the

newly added cell.

(1) Merge two cells: We first choose two adjacent remaining and non-boundary (not on 𝐻 ’s

boundary) cells with the smallest elevation value variance. In Figure 5 (b), we merge {𝑎, 𝑏} to form

𝑐 , and obtain 𝐻 . If 𝐻 is an 𝜖-approximation of 𝐻 , we confirm this merging and go to the next type.

If not, we terminate the algorithm.

(2) Merge added cell with neighbor cells: Given an added cell 𝑐 from the previous merge, we

merge 𝑐 with its neighbor cells, i.e., expand 𝑐’s non-boundary neighbor cells into left, right, top

and/or bottom directions to reduce the number of cells in 𝐻 . Expanding left (resp. right) covers

neighbors cells with 𝑥-coordinate value smaller (resp. larger) than 𝑐 , and expanding top (resp.

bottom) covers neighbors cells with 𝑦-coordinate value larger (resp. smaller) than 𝑐 , and the origin

is set at left-bottom side of 𝐻 . Let Direction, i.e., Dir = {(𝐿, 𝑅,𝑇 , 𝐵), (𝐿, 𝑅,𝑇 , ·), (𝐿, 𝑅, ·, 𝐵), (𝐿, ·,𝑇 , 𝐵),
(·, 𝑅,𝑇 , 𝐵), (𝐿, 𝑅, ·, ·), (𝐿, ·,𝑇 , ·), (𝐿, ·, ·, 𝐵), (·, 𝑅,𝑇 , ·), (·, 𝑅, ·, 𝐵), (·, ·,𝑇 , 𝐵), (𝐿, ·, ·, ·), (·, 𝑅, ·, ·), (·, ·,𝑇 , ·),
(·, ·, ·, 𝐵)} be the expanded directions, where 𝐿, 𝑅, 𝑇 , 𝐵 means that we expand 𝑐 into left, right, top
and bottom directions, and · means no expansion in that direction. For example, Dir[1] = (𝐿, 𝑅,𝑇 , ·)
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means that we cover 𝑐’s neighbors cells with 𝑥-coordinate value smaller and larger than 𝑐 , and

𝑦-coordinate value larger than 𝑐 .

In Figure 5 (c), we merge 𝑐 with {𝑑, 𝑒, . . . } to form 𝑓 , i.e., expand 𝑐 into (𝐿, 𝑅,𝑇 , 𝐵) directions, and
obtain 𝐻 . If 𝐻 is an 𝜖-approximation of 𝐻 , we confirm this merging and repeat. If not, we go back

to the two cells merging type by selecting two new cells. In Figure 5 (d), we merge 𝑙 with { 𝑗, 𝑘, . . . }
to form a potential newly added cell with a blue frame, i.e., expand 𝑙 into (𝐿, 𝑅,𝑇 , 𝐵) directions.
For 𝑙 ’s neighbor cell 𝑘 , we cover it as a whole to reduce the number of cells in 𝐻 . But, four pink

deleted cells will belong to both 𝑓 and the potential newly added cell. This violates the property of

the deleted cell in Section 2.1.2, since we do not want the potential newly added cell to overlap

with any added cell 𝑓 . So, we expand 𝑙 into the direction of other elements in Dir. In Figure 5 (e),

we merge 𝑙 with { 𝑗, . . . } to form𝑚, i.e., expand 𝑙 into (𝐿, ·,𝑇 , ·) directions, and obtain 𝐻 . If 𝐻 is

an 𝜖-approximation of 𝐻 , we confirm this merging and repeat. If not, we go back to the two cells
merging type. Similarly, we cannot expand four green added cells to cover 𝑎 in Figure 6.

a

Fig. 6. No further merging

a
b

Fig. 7. Distance checking

s~
inter-path

t~

intra-path
p q~ ~

Fig. 8. Intra- and inter-paths

4.2.2 Efficient simplification for algorithm HM-Simplify. There are three reasons why it

has a small simplification time.

(1) Efficient height map shortest path query: We use efficient algorithm HM-SP to check

whether 𝐻 is an 𝜖-approximation of 𝐻 .

(2) Efficient simplification iteration reducing: Due to the novel cell merging technique, 𝐻 is

similar to 𝐻 , and we can merge more cells in one iteration to reduce iteration numbers for pruning.

(3) Efficient 𝜖-approximate simplified height map checking: Checking whether 𝐻 is an

𝜖-approximation of 𝐻 involves checking distances related all points on 𝐻 . This naive method is

time-consuming. Instead, our efficient checking technique only checks distances related to newly

added cells’ neighbor for pruning.

4.3 Simplification Phase
We illustrate the simplification phase using algorithm HM-Simplify in Algorithm 1 (showing two

merging types), which uses Algorithm 2 (clearly updating the neighborhoods of each cell) twice.

4.3.1 Detail and example for Algorithm 1. In each simplification iteration, let𝐶 = {𝑝1, 𝑝2, . . . }
be a set of adjacent cells to be merged, and 𝑐add be an added cell merged from cells in 𝐶 . Let

FindTwoCell (𝐻 ) be a function that returns two adjacent remaining and non-boundary cells in 𝐻

with the smallest elevation values variance. Let FindAddedCellNeig (𝐻, 𝑐add, 𝑖) be a function that

returns a set of cells in 𝐻 including 𝑐add and its expanded non-boundary neighbor cells (as a whole)

in Dir[𝑖] directions without violating the property of deleted cells. Both functions return NULL if

such cells do not exist. The following shows Algorithm 1 with an example.

(1) Merge two cells (lines 2-5): In Figures 5 (a) and (b), 𝐶 = FindTwoCell (𝐻 ) = {𝑎, 𝑏}, and we can

merge cells in 𝐶 to obtain 𝑐add = 𝑐 . Suppose that Update is True, we obtain 𝐻 .
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Algorithm 1 HM-Simplify (𝐻 )

Input: 𝐻 = (𝐶, 𝑁 (·) = ∅)
Output: 𝐻 , O(·) and O−1 (·)
1: initialize 𝑁 (·) using 𝐶 , 𝐶rema ← 𝐶 , 𝐶add ← ∅, 𝑁 (·) ← 𝑁 (·), O(·) ← ∅, O−1 (·) ← ∅
2: 𝐶 ← FindTwoCell (𝐻 = (𝐶rema ∪ 𝑐add, 𝑁 (·)))
3: while 𝐶 is NON-NULL do
4: merge cells in 𝐶 to form cell 𝑐add
5: if Update (𝐶rema,𝐶add, 𝑁 (·),𝐶, 𝑐add,O(·),O−1 (·)) then
6: 𝑖 ← 0

7: while 𝑖 < 15 do
8: 𝐶 ← FindAddedCellNeig (𝐻 = (𝐶rema ∪ 𝑐add, 𝑁 (·)), 𝑐add, 𝑖)
9: if 𝐶 is NON-NULL then
10: merge cells in 𝐶 to form cell 𝑐add
11: if Update (𝐶rema,𝐶add, 𝑁 ,𝐶, 𝑐add,O(·),O−1 (·)) then
12: 𝑖 ← 0

13: else
14: 𝑖 ← 𝑖 + 1
15: 𝐶 ← FindTwoCell (𝐻 = (𝐶rema ∪ 𝑐add, 𝑁 (·)))
16: return 𝐻 = (𝐶rema ∪𝐶add, 𝑁 (·)), O(·) and O−1 (·)

(2) Merge added cell with neighbor cells (lines 6-14). In Figure 5 (c), 𝑐add = 𝑐, 𝑖 = 0 < 15,

𝐶 = FindAddedCellNeig (𝐻, 𝑐add, 𝑖) = {𝑐, 𝑑, 𝑒, . . . }, i.e., we can expand 𝑐 into Dir[0] = (𝐿, 𝑅,𝑇 , 𝐵)
directions to form 𝑐add = 𝑓 . Suppose that Update is True, we obtain 𝐻 , and set 𝑖 = 0. For later

iterations, suppose that Update is always False, we always increase 𝑖 by 1. When 𝑖 = 15, we exit this

loop. The following is the iteration.

(3) Merge two or added cell with neighbor cells (lines 2-15): In Figure 5 (d), we obtain ℎ, 𝑗, 𝑘, 𝑙 and

𝐻 . Then, we further process 𝑙 .

(4) Merge added cell with neighbor cells (lines 6-14): In Figure 5 (d), 𝑐add = 𝑙, 𝑖 = 0 < 15, we

want to use FindAddedCellNeig (𝐻, 𝑐add, 𝑖) to expand 𝑙 into Dir[0] = (𝐿, 𝑅,𝑇 , 𝐵) directions (to
include { 𝑗, 𝑘, . . . }). We get the potential newly added cell with a blue frame. But, four pink deleted

cells will belong to both 𝑓 and the newly added cell, violating the property of the deleted cell,

so such cells do not exist and 𝐶 is NULL. We repeat it until 𝐶 is NON-NULL. In Figure 5 (e),

𝑐add = 𝑙, 𝑖 = 6 < 15, 𝐶 = FindAddedCellNeig (𝐻, 𝑐add, 𝑖) = {𝑙, 𝑗, . . . }, i.e., we can expand 𝑙 into

Dir[6] = (𝐿, ·,𝑇 , ·) directions to form 𝑐add =𝑚. Suppose that Update is True, we obtain 𝐻 .

4.3.2 Detail and example for Algorithm 2. The following shows Algorithm 2 with an example.

Figure 5 (b) and (c) illustrate steps 1–4 and 5–8, respectively. Figures 5 (d) and (e) are similar.

(1) Update O′ (·) and O−1′ (·) (lines 2-8): 𝐶 = {𝑎, 𝑏} and 𝑐add = 𝑐 , since all cells in 𝐶 are in 𝐶rema,

we have O′ (𝑐) = {𝑎, 𝑏}, O−1′ (𝑎) = 𝑐 and O−1′ (𝑏) = 𝑐 .

(2) Update neighbor cells (lines 9-12): We update 𝑐 and cells represented in orange points as

neighbors of each other.

(3) Update 𝐻 ′ (lines 13-18): {𝑎, 𝑏} are deleted from 𝐶′rema and 𝑐 is added into 𝐶′add, so 𝐶
′
add = {𝑐}.

(4) Check 𝜖-approximation (lines 19-21): Suppose that 𝐻 ′ is an 𝜖-approximation of 𝐻 , we have

𝐶rema = 𝐶 \ {𝑎, 𝑏}, 𝐶add = {𝑐}, updated 𝑁 (·), 𝐻 , O(·) and O−1 (·). The following is the iteration.

(5) Update O′ (·) and O−1′ (·) (lines 2-8): 𝐶add = {𝑐}, 𝐶 = {𝑓 , 𝑑, 𝑒, . . . } and 𝑐add = 𝑓 , since for

cells in 𝐶 , 𝑐 is in 𝐶add and other cells are in 𝐶rema, we have O′ (𝑓 ) = {𝑎, 𝑏, 𝑑, 𝑒, . . . }, O−1′ (𝑎) = 𝑓 ,

O−1′ (𝑏) = 𝑓 , O−1′ (𝑑) = 𝑓 , O−1′ (𝑒) = 𝑓 , . . . , and delete O′ (𝑐).
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Algorithm 2 Update (𝐶rema, 𝐶add, 𝑁 (·), 𝐶 , 𝑐add, O(·), O−1 (·))
Input: 𝐶rema, 𝐶add, 𝑁 (·), 𝐶 , 𝑐add, O(·) and O−1 (·)
Output: updated𝐶rema,𝐶add, 𝑁 (·), O(·), O−1 (·), and whether the updated height map is an 𝜖-approximation

of 𝐻

1: 𝐶′rema ← 𝐶rema, 𝐶
′
add ← 𝐶add, 𝑁

′ (·) ← 𝑁 (·), 𝑁 ′ (𝑐add) ← ∅, O′ (·) ← O(·), O−1′ (·) ← O−1 (·)
2: for each 𝑐 ∈ 𝐶 do
3: if 𝑐 ∈ 𝐶rema then
4: O′ (𝑐add) ← O′ (𝑐add) ∪ {𝑝}, O−1′ (𝑐) ← {𝑐add}
5: else if 𝑐 ∈ 𝐶add then
6: for each 𝑐′ ∈ O′ (𝑐) do
7: O′ (𝑐add) ← O′ (𝑐add) ∪ {𝑐′}, O−1′ (𝑐′) ← {𝑐add}
8: O′ (·) ← O′ (·) − {O′ (𝑐)}
9: for each 𝑐 ∈ 𝐶 do
10: for each 𝑐′ ∈ 𝑁 (𝑐) such that 𝑐′ ∉ 𝐶 do
11: 𝑁 ′ (𝑐add) ← 𝑁 ′ (𝑐add) ∪ {𝑐′}, 𝑁 ′ (𝑐′) ← 𝑁 ′ (𝑐′) − 𝑐 ∪ {𝑐add}
12: clear 𝑁 ′ (𝑐) for each 𝑐 ∈ 𝐶
13: for each 𝑐 ∈ 𝐶 do
14: if 𝑐 ∈ 𝐶rema then
15: 𝐶′rema ← 𝐶′rema − {𝑝}
16: else if 𝑐 ∈ 𝐶add then
17: 𝐶′add ← 𝐶′add − {𝑝}
18: 𝐶′add ← 𝐶′add ∪ {𝑐add}
19: if 𝐻 ′ = (𝐶′rema ∪𝐶′add, 𝑁

′ (·)) is an 𝜖-approximation of 𝐻 then
20: 𝐶rema ← 𝐶′rema, 𝐶add ← 𝐶′add, 𝑁 (·) ← 𝑁 ′ (·), O(·) ← O′ (·), O−1 (·) ← O−1′ (·)
21: return True
22: return False

(6) Update neighbor cells (lines 9-12): We update 𝑓 and cells represented in orange points as

neighbors of each other.

(7) Update 𝐻 ′ (lines 13-18): {𝑑, 𝑒, . . . } are deleted from 𝐶′rema, 𝑐 is deleted from 𝐶′add, and 𝑓 is

added into 𝐶′add, so 𝐶
′
add = {𝑓 }.

(8) Check 𝜖-approximation (lines 19-21): Suppose that 𝐻 ′ is an 𝜖-approximaion of 𝐻 , we have

𝐶rema = 𝐶 \ {𝑎, 𝑏, 𝑑, 𝑒, . . . }, 𝐶add = {𝑓 }, updated 𝑁 (·), 𝐻 , O(·) and O−1 (·).

4.4 Efficient 𝜖-Approximate Simplified Height Map Checking
We illustrate our efficient checking technique.

4.4.1 Notation. Given an added cell 𝑐add ∈ 𝐶add, we define a set of adjacent added cells of 𝑐add,
denoted by 𝐴(𝑐add), to be a set of added cells in 𝐶add which contain 𝑐add and are adjacent to each

other. In Figure 7, 𝐴(𝑐add = 𝑎) = {𝑎, 𝑏}.

4.4.2 Detail and example. In Definition 1, we simplify the checking of Inequality 1 from “each

pair of points 𝑠 and 𝑡 on 𝐻” to points on the following each type of cells related to 𝑐add’s neighbor.
(1) Remaining to Remaining cells (R2R): We simplify to “each pair of points 𝑠 and 𝑡 of

remaining cells that are neighbor cells of each added cell in 𝐴(𝑐add)”. Figure 7 shows these points
in orange.

(2) Remaining to Deleted cells (R2D): We simplify to “each point 𝑠 of remaining cell that is a

neighbor cell of each cell in 𝐴(𝑐add), and each point 𝑡 of deleted cell that belongs to each added cell
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in 𝐴(𝑐add)”. Figure 7 shows these points in orange (corresponding to 𝑠) and purple (corresponding

to 𝑡 ).

(3) Deleted to Deleted cells (D2D): We simplify to “each pair of points 𝑠 and 𝑡 of deleted cells

that belong to each added cell in 𝐴(𝑐add)”. Figure 7 shows these points in purple.

4.5 Shortest PathQuery Phase
We illustrate the shortest path query phase using algorithm HM-SP on the simplified height map

graph 𝐺 . Intuitively, we use Dijkstra’s algorithm between source 𝑠 and destination 𝑡 on 𝐺 . But, if 𝑠

is a point on a deleted cell (i.e., 𝑠 does not exist in 𝐺), a naive algorithm uses Dijkstra’s algorithm

multiple times with all points on neighbor cells of O−1 (𝑠) as sources. But, we propose an efficient

algorithm using an efficient implicit edge insertion technique to use Dijkstra’s algorithm only once

for pruning.

4.5.1 Notation. Given a point𝑚 (on a deleted cell) and a point 𝑛 (on a remaining/added cell)

where 𝑛 ∈ 𝑁 (O−1 (𝑚)), we call the path between them passing on 𝐻 as the intra-path, and denote

it by Π1 (𝑚,𝑛 |𝐻 ) = ⟨𝑚,𝑛⟩. Given a pair of point 𝑝 (on a remaining/added cell) and point 𝑞 (on a

remaining/added cell), we call the path between them passing on 𝐻 as the inter-path, and denote

it by Π2 (𝑝, 𝑞 |𝐻 ). In Figures 5 (g) and 8, Π1 (𝑔, 𝑛 |𝐻 ) and Π1 (̃𝑠, 𝑝 |𝐻 ) in blue dashed lines are two

intra-paths, Π2 (𝑛, 𝑘 |𝐻 ) and Π2 (𝑝, 𝑞 |𝐻 ) in blue solid lines are two inter-paths.

4.5.2 Detail and example. There are two steps.

(1) Point estimation: Given a pair of points 𝑠 and 𝑡 (on cells) of 𝐻 , we estimate 𝑠̃ using 𝑠 , such

that 𝑠̃ .𝑥 = 𝑠 .𝑥 , 𝑠̃ .𝑦 = 𝑠 .𝑦, 𝑠̃ .𝑧 = O−1 (𝑠).𝑧 (if 𝑠 is on a deleted cell), or 𝑠̃ = 𝑠 (if 𝑠 is on a remaining cell).

In Figure 5 (b), since 𝑎 is a deleted cell, O−1 (𝑎) = 𝑐 , we have 𝑎.𝑥 = 𝑎.𝑥 , 𝑎.𝑦 = 𝑎.𝑦 and 𝑎.𝑧 = 𝑐.𝑧. We

estimate 𝑡̃ similarly.

(2) Path querying: There are three cases depending on whether 𝑠 and 𝑡 are on deleted or

remaining cells.

(i) Both cells deleted: Firstly, there are two special cases that we return Π (̃𝑠, 𝑡̃ |𝐻 ) = ⟨̃𝑠, 𝑡̃⟩. One is
that 𝑠 and 𝑡 are on cells belong to the different added cells 𝑢 and 𝑣 , where 𝑢 and 𝑣 are neighbor. The

other one is that 𝑠 and 𝑡 are on cells belong to the same added cell. In Figure 5 (g), Π(𝑑, 𝑖̃ |𝐻 ) = ⟨𝑑, 𝑖̃⟩
(i.e., the first case) and Π(𝑎, 𝑑 |𝐻 ) = ⟨𝑎, 𝑑⟩ (i.e., the second case). Secondly, for common case, we

return Π (̃𝑠, 𝑡̃ |𝐻 ) by concatenating the intra-path Π1 (̃𝑠, 𝑝 |𝐻 ), the inter-path Π2 (𝑝, 𝑞 |𝐻 ), and the intra-
path Π1 (𝑞, 𝑡̃ |𝐻 ), such that |Π (̃𝑠, 𝑡̃ |𝐻 ) | = min∀𝑝∈𝑁 (O−1 (𝑠 ) ),𝑞∈𝑁 (O−1 (𝑡 ) ) |Π1 (̃𝑠, 𝑝 |𝐻 ) | + |Π2 (𝑝, 𝑞 |𝐻 ) | +
|Π1 (𝑞, 𝑡̃ |𝐻 ) |. In Figure 8, orange and pink points denote possible points on cells 𝑁 (O−1 (𝑠)) and
𝑁 (O−1 (𝑡)), 𝑝 and 𝑞 are points resulting in the minimum distance among these points, respectively.

A naive algorithm uses Dijkstra’s algorithm on 𝐻 with each point on cell in 𝑁 (O−1 (𝑠)) as a source
to compute inter-paths. But, our efficient algorithm uses Dijkstra’s algorithm only once. If the

number of cells in 𝑁 (O−1 (𝑠)) is less than that of in 𝑁 (O−1 (𝑡)), we implicitly insert intra-paths

between 𝑠̃ and each point on cell in 𝑁 (O−1 (𝑠)) as edges in𝐺 (we remove them after this calculation).

Then, we use Dijkstra’s algorithm on 𝐺 with 𝑠̃ as a source, and terminate after visiting all points

on cells in 𝑁 (O−1 (𝑡)), to compute the intra-path connecting to 𝑠̃ and the inter-path. We append

them with the intra-path connecting to 𝑡̃ and obtain Π (̃𝑠, 𝑡̃ |𝐻 ). If the number of cells in 𝑁 (O−1 (𝑠))
is larger than that of in 𝑁 (O−1 (𝑡)), we swap 𝑠 and 𝑡 . In Figure 5 (g), Π(𝑔, 𝑖̃ |𝐻 ) = ⟨𝑔, 𝑛, 𝑘, 𝑖̃⟩.
(ii) One cell deleted and one cell remaining: If 𝑠 is on cell in 𝐶rema, the inter-path connecting to 𝑠

does not exist, we use Dijkstra’s algorithm on 𝐺 with 𝑠 as a source, and terminate after visiting

all points on cells in 𝑁 (O−1 (𝑡)). We append them with the intra-path connecting to 𝑡̃ and obtain

Π (̃𝑠, 𝑡̃ |𝐻 ). If 𝑡 ∈ 𝐶rema, we swap 𝑠 and 𝑡 . In Figure 5 (g), Π(𝑛, 𝑖̃ |𝐻 ) = ⟨𝑛, 𝑘, 𝑖̃⟩.
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(iii) Both cells remaining: Both inter-paths do not exist, we use Dijkstra’s algorithm on𝐺 between

𝑠 and 𝑡 to obtain Π (̃𝑠, 𝑡̃ |𝐻 ). In Figure 5 (g), Π(𝑜̃, 𝑝 |𝐻 ) = ⟨𝑜̃, 𝑘, 𝑝⟩.

4.6 ProximityQuery Algorithms
Given 𝐻 and 𝐻 , a query point 𝑖 (on cell), a set of 𝑛′ interested points on cells on 𝐻 or 𝐻 , two

parameters 𝑘 (𝑘 value in kNN query) and 𝑟 (range value in range query), we can answer kNN and

range queries using algorithm HM-SP. A naive algorithm uses it for 𝑛′ times between 𝑖 and all

interested points, and then performs a linear scan on the paths to compute kNN and range query

results.

But, we propose an efficient algorithm using an efficient parallel computation technique to use it

(i.e., Dijkstra’s algorithm) only once for pruning. (1) For algorithm HM-SP on 𝐻 , we use Dijkstra’s

algorithm once with 𝑖 as a source and all interested points as destinations, and then directly return

kNN and range query results without any linear scan. Since these paths are already sorted in order

during the execution of Dijkstra’s algorithm. (2) For algorithm HM-SP on 𝐻 , we also use Dijkstra’s

algorithm once. Except for two special cases in Section 4.5.2 case (2-i) that directly return the path

Π (̃𝑖, 𝑗̃ |𝐻 ) = ⟨̃𝑖, 𝑗̃⟩, where 𝑗 is the interested point (of an interested cell), there are two cases. We

define 𝑆 to be a set of points, such that for each 𝑗 , we store 𝑗 in 𝑆 if 𝑗 is on a remaining cell, or we

store points on cells in 𝑁 (O−1 ( 𝑗)) into 𝑆 if 𝑗 is on a deleted cell. The two cases are: (i) If 𝑖 is on a

deleted cell, we change “𝑠” to “𝑖”, “terminate after Dijkstra’s algorithm visits all points on cells in

𝑁 (O−1 (𝑡))” to “terminate after Dijkstra’s algorithm visits all points in 𝑆” and “append them with

the intra-path connecting to 𝑡̃” to “append them with the intra-path connecting to each 𝑗̃ if 𝑗 is

on a deleted cell” in Section 4.5.2 case (2-i). (ii) If 𝑖 is on a remaining cell, we apply the same three

changes in Section 4.5.2 case (2-ii). Finally, we perform a linear scan on the paths to compute kNN
and range query results.

4.7 Add-on Data Structure
Given a (1 + 𝜖)-approximate simplified graph of a complete graph, study [52] constructs a (1 + 𝜖′)-
approximate data structure on the simplified graph, to return (1 + 𝜖′) (1 + 𝜖)-approximate paths

in 𝑂 (1) time. We can use this data structure (i.e., a graph 𝐺
𝐻
) in the simplified height map graph

of 𝐻 in algorithm HM-Simplify, and use HM-SP on 𝐺
𝐻
for querying in 𝑂 (1) time. We denote our

adapted algorithms (after using𝐺
𝐻
) to be algorithms HM-Simplify Data Structure (HM-Simplify-DS)

and HM-SP Data Structure (HM-SP-DS).

4.8 Theoretical Analysis
4.8.1 Algorithms HM-Simplify and HM-SP. We analyze them in Theorems 4.1 and 4.2.

Theorem 4.1. The simplification time, number of cells in 𝐻 , output size and simplification memory
of algorithm HM-Simplify are 𝑂 (𝑛𝜆 log𝑛), 𝑂 ( 𝑛

𝜇
), 𝑂 ( 𝑛

𝜇
) and 𝑂 (𝑛) respectively, where 𝜆 ∈ [ 3

√
𝑛, 𝑛

2
]

and 𝜇 ∈ [2, log𝑛] are constants depending on 𝐻 and 𝜖 , and 𝜆 ∈ [10, 290] and 𝜇 ∈ [5, 88] in our
experiments. Given 𝐻 , it returns 𝐻 such that (1 − 𝜖) |Π(𝑠, 𝑡 |𝐻 ) | ≤ |Π (̃𝑠, 𝑡̃ |𝐻 ) | ≤ (1 + 𝜖) |Π(𝑠, 𝑡 |𝐻 ) | for
each pair of points 𝑠 and 𝑡 on 𝐻 .

Proof Sketch. The simplification time is due to the usage of Dijkstra’s algorithm in 𝑂 (𝑛 log𝑛)
time for𝑂 (1) cells in R2R, R2D and D2D checking, with total 𝜆 cell merging iterations. The number

of cells in 𝐻 and output size are due to the total 𝑛 cells on 𝐻 and 𝜇 deleted cells belonging to

each added cell on average. The simplification memory is due to the original size 𝑂 (𝑛) of 𝐻 . The

error guarantee of 𝐻 is due to the R2R, R2D and D2D checking. The detailed proof appears in our

technical report [73]. □
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Theorem 4.2. The shortest path query time and memory of algorithm HM-SP are 𝑂 (𝑛 log𝑛)
and 𝑂 (𝑛) on 𝐻 , and are 𝑂 ( 𝑛

𝜇
log

𝑛
𝜇
) and 𝑂 ( 𝑛

𝜇
) on 𝐻 , respectively. It returns the exact shortest path

passing on 𝐻 , and returns an approximate shortest path passing on 𝐻 such that (1 − 𝜖) |Π(𝑠, 𝑡 |𝐻 ) | ≤
|Π (̃𝑠, 𝑡̃ |𝐻 ) | ≤ (1 + 𝜖) |Π(𝑠, 𝑡 |𝐻 ) |.

Proof. Since there are𝑂 (𝑛) and𝑂 ( 𝑛
𝜇
) cells in𝐻 and𝐻 , algorithm HM-SP (a Dijkstra’s algorithm)

returns exact results on both, and 𝐻 is an 𝜖-approximation of 𝐻 , we finish the proof. □

4.8.2 Proximity query algorithms. Given a query point 𝑖 , let 𝑝 𝑓 and 𝑝
′
𝑓
be the furthest point

to 𝑖 computed using the ground-truth or optimal distance and a studied algorithm (computed

by algorithm HM-SP on 𝐻 and 𝐻 ), respectively. Let the error ratio of kNN or range query be

(
|Π (𝑖,𝑝′

𝑓
|𝑍 ) |

|Π (𝑖,𝑝𝑓 |𝑍 ) | − 1), where 𝑍 ∈ {𝐻, 𝑃,𝑇 } is the 3D surface (height map, point cloud or TIN ) used for

calculating the ground-truth or optimal distance (𝑍 = 𝐻 in our case). We analysis kNN or range

query using algorithm HM-SP in Theorem 4.3.

Theorem 4.3. The kNN or range query time and memory of using algorithm HM-SP are𝑂 (𝑛 log𝑛)
and 𝑂 (𝑛) on 𝐻 and 𝑂 ( 𝑛

𝜇
log

𝑛
𝜇
) and 𝑂 ( 𝑛

𝜇
) on 𝐻 , respectively. It returns the exact result on 𝐻 and has

an error ratio 2𝜖
1−𝜖 on 𝐻 for kNN or range query.

Proof Sketch. The query time and memory are due to usage of algorithm HM-SP once. The

error arises from its error. □

4.8.3 Algorithms HM-Simplify-DS and HM-SP-DS. We analyze them in Theorems 4.4 and 4.5.

Theorem 4.4. The simplification time, number of edges in𝐺
𝐻
, output size and simpflicationmemory

of algorithm HM-Simplify-DS are 𝑂 (𝑛𝜆 log𝑛 + 𝑛2

𝜇2
log

2 𝑛
𝜇
), 𝑂 ( 𝑛

𝜇
log

𝑛
𝜇
), 𝑂 ( 𝑛

𝜇
log

𝑛
𝜇
) and 𝑂 ( 𝑛

𝜇
log

𝑛
𝜇
),

respectively. Given a height map 𝐻 , it returns 𝐺
𝐻
such that |Π (̃𝑠, 𝑡̃ |𝐺

𝐻
) | ≤ (1 + 𝜖′) (1 + 𝜖) |Π(𝑠, 𝑡 |𝐻 ) |

for each pair of points 𝑠 and 𝑡 on 𝐻 , where Π (̃𝑠, 𝑡̃ |𝐺
𝐻
) is the approximate shortest path between 𝑠̃ and

𝑡̃ passing on 𝐺
𝐻
.

Theorem 4.5. The shortest path query time and memory, kNN or range query time and memory
of algorithm HM-SP-DS are 𝑂 (1), 𝑂 ( 𝑛

𝜇
log

𝑛
𝜇
), 𝑂 (𝑛′) and 𝑂 ( 𝑛′𝑛

𝜇
log

𝑛
𝜇
), respectively. It returns an

approximate shortest path passing on𝐺
𝐻
such that |Π (̃𝑠, 𝑡̃ |𝐺

𝐻
) | ≤ (1 + 𝜖′) (1 + 𝜖) |Π(𝑠, 𝑡 |𝐻 ) |, and has

an error ratio 𝜖′ · 𝜖 + 𝜖′ + 𝜖 for kNN or range query.

Proof Sketch. The detailed proofs of Theorems 4.4 and 4.5 appear in our technical report [73].

□

5 Empirical Studies
5.1 Experimental Setup
We performed experiments using a Linux machine with 2.2 GHz CPU and 512GB memory. Algo-

rithms were implemented in C++. The experiment setup follows studies [44, 45, 64, 65, 71, 72, 74].

5.1.1 Datasets. (1) Height map datasets: We conducted experiments using 34 (= 5 + 5 + 24) real
height map datasets listed in Table 1, where the subscript ℎ indicates a height map. (i) 5 Original
datasets: GFℎ [12, 72], LMℎ [15, 72] and RMℎ [19, 72] are originally represented as height maps

obtained fromGoogle Earth [9]. They are used in study [72]. BHℎ [6, 64, 65, 72] and EPℎ [6, 64, 65, 72]
are originally represented as points clouds, we created height maps with cell’s 2D coordinate and

elevation values equal to the 𝑧-coordinate values of these points. They are used in studies [64, 65, 72].
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These five datasets have a 20km × 20km region with a 28m × 28m resolution [45, 65, 71, 72].

(ii) 5 Small-version datasets: They are generated using the same region as the original datasets,

with a 633m × 633m resolution, following the dataset generation steps [65, 71, 72]. (iii) 24 Multi-
resolution datasets: They are generated similarly with varying numbers of cells. (2 & 3) Point
cloud and TIN datasets: We convert the height map datasets to 34 point cloud datasets by cell

mapping [26, 47, 63, 77], and then to 34 TIN datasets by point triangulation [35, 62, 72]. We use 𝑝

and 𝑡 as subscripts, respectively.

Table 1. Height map datasets

Name |𝒏 |
Original dataset

GunnisonForest (GFℎ) [12, 72] 0.5M

LaramieMount (LMℎ) [15, 72] 0.5M

RobinsonMount (RMℎ) [19, 72] 0.5M

BearHead (BHℎ) [6, 64, 65, 72] 0.5M

EaglePeak (EPℎ) [6, 64, 65, 72] 0.5M

Small-version dataset
GFℎ-small 1k

LMℎ-small 1k

RMℎ-small 1k

BHℎ-small 1k

EPℎ-small 1k

Multi-resolution dataset
GFℎ multi-resolution 5M, 10M, 15M, 20M, 25M

LMℎ multi-resolution 5M, 10M, 15M, 20M, 25M

RMℎ multi-resolution 5M, 10M, 15M, 20M, 25M

BHℎ multi-resolution 5M, 10M, 15M, 20M, 25M

EPℎ multi-resolution 5M, 10M, 15M, 20M, 25M

EPℎ-small multi-resolution 10k, 20k, 30k, 40k, 50k

5.1.2 Algorithms. (1) To solve our problem on Height Maps, we adapted existing algorithms

on point clouds or TIN s, by converting the given height maps to point clouds [26, 47, 63, 77]

or TIN s [26, 35, 47, 62, 63, 72, 77] so that the existing algorithms could be performed. Then, we

add “-Adapt(HM)” in algorithm names. We have 4 simplification algorithms: (i) the best-known

adapted TIN simplification algorithm TIN-SSimplify-Adapt(HM) [42, 45], (ii) adapted TIN shortest

network distance simplification algorithm TIN-NSimplify-Adapt(HM) [45], (iii) the best-known
adapted point cloud simplification algorithm PC-Simplify-Adapt(HM) [24, 72] and (iv) our height

map simplification algorithm HM-Simplify. We have 5 proximity query algorithms: (i) the best-

known adapted exact TIN shortest surface path query algorithm TIN-ESSP-Adapt(HM) [28, 66, 74],
(ii) the best-known adapted approximate TIN shortest surface path query algorithm TIN-ASSP-
Adapt(HM) [44, 71], (iii) the best-known adapted approximate TIN shortest network path query

algorithm TIN-SNP-Adapt(HM) [45], (iv) the best-known adapted exact point cloud shortest path

query algorithm PC-SP-Adapt(HM) [72] and (v) our exact height map shortest path query algorithm

HM-SP. The exact algorithms refer to their particular 3D surfaces only. For 4 proximity query

algorithms TIN-ESSP-Adapt(HM), TIN-SNP-Adapt(HM), PC-SP-Adapt(HM) and HM-SP, we use 𝜖 = 0

(resp. 𝜖 > 0) to denote that we apply them on the original (resp. simplified) surfaces. Since TIN-
ESSP-Adapt(HM) with 𝜖 > 0 already means calculating the exact shortest surface path passing on a

simplified TIN, there is no need to use TIN-ASSP-Adapt(HM) on the simplified TIN again, i.e., no

need to distinguish 𝜖 = 0 or 𝜖 > 0 for it. So, we only consider it with 𝜖 > 0 on the original height

map for simplicity. We compare all algorithms in Tables 2 and 3.
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Table 2. Comparison of simplification algorithms

Algorithm Simplification time Output size
TIN-SSimplify-Adapt(HM) [42, 45] 𝑂 ( 𝑛3

sin𝜃
√
𝜖
log

1

𝜖
) Large 𝑂 (𝑛) Large

TIN-NSimplify-Adapt(HM) [45] 𝑂 (𝑛2 log𝑛) Medium 𝑂 (𝑛) Large

PC-Simplify-Adapt(HM) [24, 72] 𝑂 (𝑛2 log𝑛) Medium 𝑂 (𝑛) Large

HM-Simplify (ours) 𝑶 (𝒏𝝀 log𝒏) Small 𝑶 ( 𝒏𝝁 ) Small

Table 3. Comparison of proximity query algorithms

Algorithm Shortest path query time Error
On the original 3D surfaces

TIN-ESSP-Adapt(HM) [28, 66, 74] 𝑂 (𝑛2 ) Large Small

TIN-ASSP-Adapt(HM) [44, 71]
𝑂 ( 𝑙max𝑛

𝜖𝑙min
√
1−cos𝜃

log( 𝑙max𝑛
𝜖𝑙min

√
1−cos𝜃

) )
Large Small

TIN-SNP-Adapt(HM) [45] 𝑂 (𝑛 log𝑛) Medium Medium

PC-SP-Adapt(HM) [72] 𝑂 (𝑛 log𝑛) Medium No error

HM-SP (ours) 𝑶 (𝒏 log𝒏) Medium No error
On the simplified 3D surfaces

TIN-ESSP-Adapt(HM) [28, 66, 74] 𝑂 (𝑛2 ) Large Small

TIN-SNP-Adapt(HM) [45] 𝑂 (𝑛 log𝑛) Medium Medium

PC-SP-Adapt(HM) [72] 𝑂 (𝑛 log𝑛) Medium Small

HM-SP (ours) 𝑶 ( 𝒏𝝁 log 𝒏
𝝁 ) Small Small

(2) To solve the existing problem on Point Clouds [72], we adapted algorithms on height maps or

TIN s, by converting the given point clouds to height maps [25, 60] or TIN s [35, 62, 72]. Then, we add

“-Adapt(PC)” in algorithm names. Similarly, we have 9 algorithms: (i) TIN-SSimplify-Adapt(PC) [42,
45], (ii) TIN-NSimplify-Adapt(PC) [45], (iii) PC-Simplify [24, 72], (iv) HM-Simplify-Adapt(PC), (v)
TIN-ESSP-Adapt(PC) [28, 66, 74], (vi) TIN-ASSP-Adapt(PC) [44, 71], (vii) TIN-SNP-Adapt(PC) [45],
(viii) PC-SP [72] and (ix) HM-SP-Adapt(PC).

(3) To solve the existing problem on TINs [42, 45], we adapted algorithms on height maps or point

clouds, by converting the given TIN s to height maps [23, 39] or point clouds [72, 75]. Then, we

add “-Adapt(TIN)” in algorithm names. Similarly, we have 9 algorithms: (i) TIN-SSimplify [42, 45],

(ii) TIN-NSimplify [45], (iii) PC-Simplify-Adapt(TIN) [24, 72], (iv) HM-Simplify-Adapt(TIN), (v) TIN-
ESSP [28, 66, 74], (vi) TIN-ASSP [44, 71], (vii) TIN-SNP [45], (viii) PC-SP-Adapt(TIN) [72] and (ix)

HM-SP-Adapt(TIN).
Points (2) and (3) are additional adaptations since we want to see the performance of our

algorithms for other problems. These adaptations involve data conversion. If no data conversion is

involved, (1) we can adapt HM-Simplify and HM-SP to the point cloud, and the adapted versions

have the same performance as them on the height map since the height map graph and the point

cloud graph are the same, and (2) there is no reason to adapt HM-Simplify and HM-SP to the TIN
since expensive TIN re-triangulation is involved in simplification, and the TIN ’s structure is more

complex, which both significantly harm the performance (i.e., adapted versions have the similar

performance of TIN-NSimplify and TIN-SNP on the TIN ).

5.1.3 ProximityQueries. We conducted 3 queries. (1) Shortest path query: we used 100 travelers’

real hiking GPS data (recording sources and destinations) in 2023 from Google Maps [11] on each

real height map, point cloud or TIN dataset to perform the query. We report the average, maximum

and minimum results. The experimental result figures’ points indicate the average results, and

vertical bars represent the maximum and minimum values. (2 & 3) kNN and range queries: we used

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 244. Publication date: September 2025.



244:18 Yinzhao Yan & Raymond Chi-Wing Wong

travelers’ real nearby searching data of 1000 query objects (viewpoints and hotels) in 2023 from

Tripadvisor [76] on each dataset to perform the proximity query algorithm in Section 4.6.

5.1.4 Factors and Metrics. We studied 5 factors: (1) 𝜖 , (2) 𝑛 (dataset size, i.e., the number of cells,

points or vertices of a height map, point cloud or TIN ), (3) 𝑑 (the maximum pairwise distances

among query objects), (4) 𝑘 (𝑘 value in kNN query) and (5) 𝑟 (range value in range query). When

not varying 𝑑 ∈ [4km, 20km], 𝑘 ∈ [200, 1000] and 𝑟 ∈ [2km, 10km], we fix 𝑑 at 10km, 𝑘 at 500 and

𝑟 at 5km according to studies [32, 59]. For simplification algorithms, we employed 4 metrics: (1)

preprocessing time (the data conversion time (if any) plus the simplification time, where the former

is 10
6
to 10

9
times smaller than the latter), (2) the number of cells, points or vertices in the simplified

height map, point cloud or TIN, (3) output size and (4) preprocessing memory (simplification memory).

For proximity query algorithms, we employed 9 metrics: (1) query time (the data conversion time

(if any) plus the shortest path query time, where the former is 10
4
to 10

6
times smaller than the

latter), (2 & 3) kNN or range query time (the data conversion time (if any) plus kNN or range query

time), (4) memory (during the shortest path query algorithm execution), (5 & 6) kNN or range query
memory, (7) distance error ratio (the error ratio of the distance calculated by a studied algorithm

compared with the ground-truth or optimal distance), (8 & 9) kNN or range query error ratio (see
Section 4.8.2).

There are two sets of experiments regarding distance error ratio calculation. We first introduce

the following. The relative error of the TIN ’s exact shortest surface distance [34, 43] and the height

map’s exact shortest distance [47, 63] compared with the real shortest distance in the real world

(measured in an on-site survey on a real 3D surface by human) are 0.0454 and 0.0613 on average,

with variance 0.0015 and 0.0026, respectively. Both distances are approximation of the real shortest

distance without a bound guarantee (similar to well-known road network models [37, 41]), and the

latter is computed on the point cloud converted from the given height map (since the point cloud’s

exact shortest distance is the same as the height map’s exact shortest distance in Section 3.1). Then,

we introduce the two sets of experiments. (1) We regard the TIN ’s exact shortest surface distance

(computed by TIN-ESSP with 𝜖 = 0) as the so-called ground-truth distance when using height maps,

point clouds and TIN s as input consistently across experiments. When we write ground-truth

distance, we mean the TIN ’s exact shortest surface distance. The first reason is that compared with

the real shortest distance, the average error of this distance, i.e., 0.0454, is smaller than that of the

height map’s exact shortest distance, i.e., 0.0613, although this distance is not always smaller than

the height map’s exact shortest distance in Section 3.1 (e.g., Euclidean distance is usually smaller

than TIN ’s exact shortest surface distance, but its error is larger). The second reason is that a TIN is

a more detailed representation of the underlying 3D surface. The third reason is that this distance

is widely used in studies [42, 44, 64, 65, 74]. (2) For the rigorous formulation of our problem and

proposed algorithms comparison (based on height map only), we regard the height map’s exact

shortest distance (computed by HM-SP with 𝜖 = 0) as the optimal distance under this particular 3D

surface. When we write optimal distance, we mean the height map’s exact shortest distance.

5.2 Experimental Results
5.2.1 Height maps with ground-truth distance. We studied proximity queries on height maps

using the ground-truth distance for distance error ratio calculation. We compared all algorithms in

Tables 2 and 3 on small-version datasets, and compared HM-Simplify, and HM-SP and TIN-ASSP-
Adapt(HM) (since other algorithms are very slow) on original datasets.

(1) Baseline comparisons:
(i) Effect of 𝜖: In Figures 9 (a) to (h), we tested 7 values of 𝜖 in {0, 0.05, 0.1, 0.25, 0.5, 0.75, 1}

on GFℎ-small dataset while fixing 𝑛 at 1k for baseline comparisons. The preprocessing time of
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HM-Simplify is much smaller than three baselines’ due to the efficient height map shortest path

query and efficient 𝜖-approximate simplified height map checking (although the worst case is

𝑂 (𝑛2 log𝑛) in Theorem 4.1, which never happens in the experiment). The number of cells of the

simplified height map and output size of HM-Simplify are also much smaller than three baselines’

due to the novel cell merging technique. The memory of a simplification algorithm is the same as

that of the corresponding shortest path query algorithm with 𝜖 = 0, since we clear the memory

after performing one shortest path query during simplification, the preprocessing memory figures

are omitted. The shortest path, kNN and range query time (𝑂 ( 𝑛𝑛′
𝜇

log
𝑛
𝜇
) in Theorem 4.3) of HM-SP

on the simplified height map are also small since its simplified height map has a small output

size. The shortest path, kNN and range query memory are similar, since we clear the memory

after performing one shortest path query during kNN or range query, the kNN and range query

memory figures are omitted. Although increasing 𝜖 slightly increases the experimental distance

error ratio of HM-SP on the simplified height map, i.e., close to 0. So, increasing 𝜖 has no impact

on the experimental kNN and range query error ratios, their values are 0 (since |Π(𝑖, 𝑝′
𝑓
|𝑇 ) | =

|Π(𝑖, 𝑝 𝑓 |𝑇 ) | in Section 4.8.2), and their results are omitted. In Figure 9 (h), the relative error of

distance returned by HM-SP on the simplified height map compared with the ground-truth distance

is 0.0340. Compared with the real shortest distance, recall that the relative error of the ground-truth

distance is 0.0454, so the relative error of the distance returned by HM-SP on the simplified height

map is 0.0809(= (1+0.0340) × (1+0.0454) −1). Since the relative error can have negative values, the

relative error is also 0.0779(= 1− (1− 0.0340) × (1− 0.0454)). We take 0.0809 = max(0.0809, 0.0779).
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Fig. 9. Effect of 𝜖 on GFℎ-small height map dataset

(ii) Effect of 𝑛 (scalability test): In Figures 10 (a) to (e), we tested 5 values of 𝑛 in {5M, 10M, 15M,

20M, 25M} on LMℎ dataset while fixing 𝜖 at 0.25 for baseline comparisons. HM-Simplify (in terms

of output size, i.e., 6.8MB) and HM-SP on the simplified height map (in terms of range query time,

i.e., 310s ≈ 5.1 min, and range query memory, i.e., 320MB) are scalable on extremely large height

map with 25M cells. Although the theoretical output size of HM-Simplify is only 𝜇 times smaller

than the size of an original height map, it returns a simplified height map with an experimental
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size of 6.8MB from an original one with size 600MB and 25M cells, and performing range query

on them with 500 objects takes 400s ≈ 6.7 min and 35,200s ≈ 9.8 hours, with 320MB and 1.1GB

memory, respectively. When 𝑛 is smaller, i.e., datasets with looser density or fragmentation (since

multi-resolution datasets have the same region), algorithms run faster with less memory.
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Fig. 10. Effect of 𝑛 on LMℎ height map dataset

(iii) Effect of 𝑑 : In Figure 11, we tested 5 values of 𝑑 in {4km, 8km, 12km, 16km, 20km} on RMℎ

dataset while fixing 𝜖 at 0.25 and 𝑛 at 0.5M for baseline comparisons. A smaller 𝑑 reduces shortest

path, kNN and range query time, since HM-SP and our proximity query algorithm use Dijkstra’s

algorithm once, we can terminate them earlier after visiting all destination objects or query objects.

As 𝑑 increases, there is no upper bound on the increase in shortest path query time (since we

terminate Dijkstra’s algorithm based solely on 𝑑), and also in kNN query time (since we append the

paths computed by Dijkstra’s algorithm and the intra-paths as results, we cannot determine the

distance correlations among these paths until we perform a linear scan, i.e., we terminate Dijkstra’s

algorithm based solely on 𝑑). But, there is an upper bound on the increase in range query time

(since we can also terminate Dijkstra’s algorithm earlier if the searching distance exceeds 𝑟 ).
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Fig. 11. Effect of 𝑑 on RMℎ height map dataset
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Fig. 12. Ablation study for proximity
query algorithms (effect of 𝑘 and 𝑟

on RMℎ height map dataset)

(2) Ablation study for proximity query algorithms (effect of 𝑘 and 𝑟 ): We considered

two variations of HM-SP (on the simplified height map), i.e., (i) HM-SP Naive Shortest path query
(HM-SP-NS): HM-SP using the naive shortest path query algorithm in Section 4.5, but the efficient

proximity query algorithm in Section 4.6, and (ii) HM-SP Naive Proximity query (HM-SP-NP): HM-SP
using the efficient shortest path query algorithm, but the naive proximity query algorithm. In

Figure 12, we tested 5 values of 𝑘 in {200, 400, 600, 800, 1000} and 5 values of 𝑟 in {2km, 4km, 6km,
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8km, 10km} both on RMℎ dataset while fixing 𝜖 at 0.25 and 𝑛 at 0.5M for ablation study. On the

simplified height map, HM-SP outperforms both HM-SP-NS and HM-SP-NP, due to the efficient

querying algorithms. Due to the two reasons in the previous paragraph, 𝑘 does not affect kNN
query time, but a smaller 𝑟 reduces range query time.

(3) Ablation study for simplification algorithms: We considered three variations of HM-
Simplify, i.e., (i) HM-Simplify Naive Merging (HM-Simplify-NM): HM-Simplify using the naive

merging technique that only merges two cells in Sections 4.2.1 and 4.2.2 point (2), (ii) HM-Simplify
Naive Checking (HM-Simplify-NC): HM-Simplify using the naive checking technique that checks

whether Inequality 1 is satisfied for all points in Section 4.2.2 point (3) and (iii) HM-Simplify-DS
(with 𝜖′ = 0.25). Let HM-SP-NM, HM-SP-NC and HM-SP-DS be the corresponding proximity query

algorithms on the simplified height map. In Figure 13, we tested 6 values of 𝜖 in {0.05, 0.1, 0.25, 0.5,
0.75, 1} on BHℎ-small dataset while fixing 𝑛 at 0.5M for ablation study. HM-Simplify performs the

best, showing the effectiveness of our merging and checking techniques. Since HM-Simplify-DS
has a large simplification time but HM-SP-DS has a small shortest path query time, they are useful

when we prioritize the latter time over the former.
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Fig. 13. Ablation study for simplification algorithms
on BHℎ-small height map dataset
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Fig. 14. Effect of 𝜖 on EP𝑝 -small point cloud dataset

5.2.2 Point clouds with ground-truth distance. We studied proximity queries on point clouds

using the ground-truth distance for distance error ratio calculation. In Figure 14, we tested 7 values

of 𝜖 in {0, 0.05, 0.1, 0.25, 0.5, 0.75, 1} on EP𝑝 -small dataset while fixing𝑛 at 1k for baseline comparison.

HM-Simplify-Adapt(PC) and HM-SP-Adapt(PC) on the simplified height map still outperforms other

baselines.

5.2.3 TINswith ground-truth distance. We studied proximity queries on TIN s using the ground-

truth distance for distance error ratio calculation. In Figure 15, we tested 5 values of 𝑛 in {10k, 20k,
30k, 40k, 50k} on EP𝑡 -small dataset while fixing 𝜖 at 0.1 for baseline comparisons. HM-Simplify-
Adapt(TIN) still outperforms other baselines. The distance error ratio of HM-SP-Adapt(TIN) on the

simplified height map is 0.0401, but the distance error ratio of TIN-SNP on the simplified TIN is

0.2732.

5.2.4 Height maps with optimal distance. We studied proximity queries on height maps using

the optimal distance for distance error ratio calculation. In Figures 9 (i) and 10 (f), the relative error

of distance returned by HM-SP on the simplified height map compared with the optimal distance

is 0.0186. Compared with the real shortest distance, recall that the relative error of the optimal

distance is 0.0613, so the relative error of the distance returned by HM-SP on the simplified height
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Fig. 15. Effect of 𝑛 on EP𝑡 -small TIN dataset

map is 0.0810(= (1+0.0186) × (1+0.0613) −1). Since the relative error can have negative values, the

relative error is also 0.0788(= 1− (1− 0.0186) × (1− 0.0613)). We take 0.0810 = max(0.0810, 0.0788).

5.2.5 Case study. We performed a snowfall evacuation case study [5] at Gates of the Arctic [57]

to evacuate tourists to nearby hotels. In Figure 1 (a), due to each hotel’s capacity constraints, we

find shortest paths from viewpoint 𝑎 to 𝑘-nearest hotels 𝑏, 𝑐, 𝑑 , where 𝑐 and 𝑑 are 𝑘-nearest options

when 𝑘 = 2. An individual will be buried in snow in 2.4 hours
3
, and the evacuation can be finished

in 2.2 hours
4
. Thus, we need to compute shortest paths within 12 min (= 2.4 − 2.2 hours). Our

experiments show that for a height map with 50k cells, 10k tourist positions and 50 hotels, the

simplification time for our algorithm HM-Simplify, our adapted algorithm HM-Simplify-DS, the
best-known adapted point cloud simplification algorithm PC-Simplify-Adapt(HM) and the best-

known adapted TIN simplification algorithm TIN-SSimplify-Adapt(HM) are 250s ≈ 4.6 min, 125,000s

≈ 1.5 days, 5,250s ≈ 1.5 hours and 103,000s ≈ 1.2 days. Computing 10 nearest hotels for each tourist

position on the simplified 3D surfaces of these algorithms takes 50s, 5s, 250s ≈ 4.2 min and 67,000s

≈ 18.6 hours, respectively. Thus, height map simplification is necessary since 4.6 min + 1.6 min ≤
12 min. Recall that only the height map dataset is available for this region, we capture the height

map dataset after snowfall, and we have efficient height map simplification and shortest path query

algorithms. So, there is no reason to convert the height map to the point cloud or TIN, and perform

other slow adapted point cloud or TIN algorithms for simplification and shortest path query. In

addition, it is known that algorithms with larger (resp. smaller) simplification time but smaller

(resp. larger) shortest path query time are better (resp. worse) if we need simplification before the
query issue. But, it is not true in our case, since we capture the height map dataset after snowfall,
the simplification time is considered after snowfall. So, we design HM-Simplify to efficiently reduce
the simplification time, and significantly reduce its output size so that the shortest path query

time on the simplified height map is small. But, HM-Simplify-DS is not suitable due to the large

simplification time.

5.2.6 Paths visualization. In Figure 16, we visualize different paths to verify distance relation-

ships in Section 3.1. (1) Given a height map, the paths in Figures 16 (a) (showing the height map)

and (b) (showing the same height map in bird’s eye view) computed by our algorithm HM-SP on

3
2.4 hours = 10centimeters×24hours

1meter
, since the snowfall rate (i.e., the snow depth over a period [29, 58]) at Gates of the Arctic is

1 meter per 24 hours [5], and when the snow depth exceeds 10 centimeters, it is difficult to walk and easy to bury in the

snow [36].

4
2.2 hours = 11.2km

5.1km/h , since the average distance between the viewpoints and hotels at Gates of the Arctic is 11.2km [10],

and human’s average walking speed is 5.1 km/h [18].
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the original height map and the path in Figure 16 (c) computed by the best-known adapted point

cloud shortest path query algorithm PC-SP-Adapt(HM) on the original point cloud are identical

(since |Π(𝑠, 𝑡 |𝐻 ) | = |Π(𝑠, 𝑡 |𝑃) |). The paths in Figures 16 (a) and (b) are similar to the green path in

Figure 16 (d) computed by the best-known adapted exact TIN shortest surface path query algo-

rithm TIN-ESSP-Adapt(HM) on the original TIN (since |Π(𝑠, 𝑡 |𝐻 ) | ≤ 𝛼 · |Π(𝑠, 𝑡 |𝑇 ) |), but computing

the former path is much quicker. The distance error ratios of the paths in Figures 16 (a) and (b)

are smaller than that of the purple (network) path in Figure 16 (d) computed by the best-known

approximate TIN shortest network path query algorithm TIN-ESSP on the original TIN (since

|Π(𝑠, 𝑡 |𝐻 ) | ≤ |Π𝑁 (𝑠, 𝑡 |𝑇 ) |). The paths in Figures 16 (a) and (b) are similar to the paths in Figures 16

(e), (f), (g) and (h) computed by our algorithm HM-SP on the simplified height maps, but computing

the latter four paths are quicker due to the simplified height maps. The path in Figures 16 (e)

and (f) are similar to the green path in Figure 16 (i) on a simplified point cloud (generated by

the best-known adapted point cloud simplification algorithm PC-Simplify-Adapt(HM)) and the

green (surface) path in Figure 16 (j) on a simplified TIN (generated by the best-known adapted TIN
simplification algorithm TIN-SSimplify-Adapt(HM)). (2 & 3) Given a point cloud or a TIN, the path
results are the same, since only data conversion is involved in the beginning of the algorithm.
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Fig. 16. Paths passing on original/simplified height maps (in bird’s view), point clouds and TINs

5.2.7 Summary. On a height map with 50k cells and 10k objects, HM-Simplify’s simplification

time and output size are 250s ≈ 4.6 min and 0.07MB, which are up to 21 times and 5 times (resp.

412 times and 7 times) better than the best-known adapted point cloud (resp. TIN ) simplification

algorithm PC-Simplify-Adapt(HM) (resp. TIN-SSimplify-Adapt(HM)). Performing kNN query on

our simplified height map takes 50s, which is up to 5 times and 1,340 times smaller than on the

simplified point cloud and on the simplified TIN, respectively. Although the 3D surfaces for GFℎ
and BHℎ datasets are peaky, and for LMℎ , RMℎ and EPℎ datasets are staircase-like, HM-Simplify and

HM-SP outperform other baselines no matter how the 3D surfaces look like.

6 Conclusion
We propose an efficient height map simplification algorithm HM-Simplify, that outperforms the

best-known adapted algorithm concerning the simplification time and output size. We also propose

an efficient shortest path algorithm HM-SP on the original/simplified height map, and design

algorithms for answering kNN and range queries on the original/simplified height map. For future

work, we can explore how to simplify an updated height map. That is, given an original height

map, we first simplify it. When the original height map is updated, we also update the simplified

height map, such that there is no need to perform simplification on the updated height map from

scratch for time-saving.
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