
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025 557

An Efficiently Updatable Path Oracle for
Terrain Surfaces

Yinzhao Yan , Raymond Chi-Wing Wong , and Christian S. Jensen , Fellow, IEEE

Abstract—The booming of computer graphics technology facili-
tates the growing use of terrain data. Notably, shortest path query-
ing on a terrain surface is central in a range of applications and
has received substantial attention from the database community.
Despite this, computing the shortest paths on-the-fly on a terrain
surface remains very expensive, and all existing oracle-based algo-
rithms are only efficient when the terrain surface is fixed. They
rely on large data structures that must be re-constructed from
scratch when updates to the terrain surface occur, which is very
time-consuming. To advance the state-of-the-art, we propose an
efficiently updatable (1 + ε)-approximate shortest path oracle for
a set of Points-Of-Interests (POIs) on an updated terrain surface,
and it can be easily adapted to the case if POIs are not given as
input. Our experiments show that when POIs are given (resp. not
given), our oracle is up to 88 times, 12 times, and 3 times (resp. 15
times, 50 times, and 100 times) better than the best-known oracle
on terrain surfaces in terms of the oracle update time, output size,
and shortest path query.

Index Terms—Spatial databases, query processing, shortest path
query, terrain.

I. INTRODUCTION

CALCULATING shortest paths on terrain surfaces is a topic
of widespread interest [1]. In industry, Metaverse [2] and

Google Earth [3] use shortest paths on terrain surfaces (e.g., in
virtual reality or on Earth) to assist users to reach destinations
more quickly. In academia, shortest path querying on terrain
surfaces also attracts considerable attention [4], [5], [6], [7], [8],
[9], [10], [11], [12]. A terrain surface is represented by a set of
faces, each of which is captured by a triangle. A face consists
of three line segments, called edges, connected with each other
at three vertices. Fig. 1(a) and (b) show a real map of Valais,
Switzerland [13] with an area of 20 km × 20 km, and Fig. 1(c)
and (d) show Valais terrain surface (consisting of vertices, edges
and faces).

Received 10 December 2023; revised 28 July 2024; accepted 17 October
2024. Date of publication 21 October 2024; date of current version 12 January
2025. The work of Yinzhao Yan and Raymond Chi-Wing Wong was supported
by GZSTI16EG24. The work of Christian S. Jensen is supported in part by
the Innovation Fund Denmark project DIREC under Grant (9142-00001B).
Recommended for acceptance by K. Zheng. (Corresponding author: Yinzhao
Yan.)

Yinzhao Yan and Raymond Chi-Wing Wong are with the Hong Kong Uni-
versity of Science and Technology, Clear Water Bay, Hong Kong (e-mail:
yyanas@cse.ust.hk; raywong@cse.ust.hk).

Christian S. Jensen is with Aalborg University, 9220 Aalborg, Denmark (e-
mail: csj@cs.aau.dk).

Code: https://github.com/yanyinzhao/UpdatedStructureTerrainCode
This article has supplementary downloadable material available at

https://doi.org/10.1109/TKDE.2024.3484434, provided by the authors.
Digital Object Identifier 10.1109/TKDE.2024.3484434

Fig. 1. The real map (a) before and (b) after updates, the terrain surface (c)
before and (d) after updates for avalanche in Valais, Switzerland.

A. Motivation

1) Updated terrain surface: The computation of shortest paths
on updated terrain surfaces occurs in many scenarios.

(i) Earthquake: We aim to find the shortest rescue paths
for life-saving after an earthquake. The death toll of the 7.8
magnitude earthquake on Feb 6, 2023 in Turkey and Syria
exceeded 40,000 [14], and more than 69,000 died in the 7.9
magnitude earthquake on May 12, 2008 in Sichuan, China [15].
A rescue team can save 3 lives every 15 minutes [16], and we
expect that the team can arrive at the sites of the quake as early
as possible. In practice, (a) satellites or (b) drones can be used
to collect the terrain surface after an earthquake, which takes (a)
10 s and USD $48.72 [17], and (b) 144 s ≈ 2.4 min and USD
$100 [18] for a 1 km2 region, respectively, which are time and
cost efficient.

(ii) Avalanche: Earthquakes may cause avalanches. The 4.1
magnitude earthquake on Oct 24, 2016in Valais [13] caused an
avalanche: Fig. 1(a) and (b) (resp. Fig. 1(c) and (d)) show the
original and new shortest paths between a (a village) and b (a
hospital) on a real map (resp. a terrain surface) before and after
terrain surface updates. We need to efficiently find the shortest
rescue paths.

(iii) Marsquake: As observed by NASA’s InSight lander
on May 4, 2022 [19], Mars also experienced a marsquake.
In NASA’s Mars exploration project [20] (with cost USD 2.5
billion [21]), Mars rovers should find the shortest escape paths
quickly and autonomously in regions affected by marsquakes to
avoid damage.

2) P2P and A2A query: (i) Given a set of Points-Of-Interest
(POI) on a terrain surface, we can calculate the shortest path
between pairs of POIs, i.e., perform the POI-to-POI (P2P)
query. For earthquakes and avalanches, POIs can be villages
waiting for rescuing [22], hospitals, and expressway exits. For

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6261-1569
https://orcid.org/0000-0001-7045-6503
https://orcid.org/0000-0002-9697-7670
mailto:yyanas@cse.ust.hk
mailto:raywong@cse.ust.hk
mailto:csj@cs.aau.dk
https://github.com/yanyinzhao/UpdatedStructureTerrainCode
https://doi.org/10.1109/TKDE.2024.3484434

558 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

the Marsquake, POIs can be working stations of Mars rover. (ii)
If no POIs are given, we calculate the shortest path between
pairs of arbitrary points (including the vertices of the terrain
surface), i.e., perform the arbitrary points-to-arbitrary points
(A2A) query. The A2A query generalizes the P2P query because
it allows any points on a terrain surface.

3) Oracle: Pre-computing shortest paths on a terrain surface
using an index, known as an oracle, can efficiently reduce the
shortest path query time, especially when we need to calculate
more than one shortest path with different sources and destina-
tions (where the time taken to pre-compute the oracle is called
the oracle construction time, the space usage of the output oracle
is called the output size, and the time taken to return the result
is called the shortest path query time). We also aim to update
the oracle quickly when the terrain surface changes (where the
time taken to update the oracle is called the oracle update time).
In earthquakes, avalanches or Marsquakes, if we pre-compute
shortest paths (among villages, hospitals or Mars rover working
stations) using an oracle on terrain surfaces prone to these
disasters, and efficiently update the oracle after the disaster, then
we can use it to efficiently return shortest paths.

B. Challenges

1) Inefficiency of on-the-fly algorithms: Consider a terrain
surface T with N vertices. All existing exact on-the-fly shortest
path algorithms [23], [24], [25], [26] on a terrain surface are slow
when many shortest path queries are involved. As recognized
by existing studies [1], [5], [10], [27], the best-known exact
algorithm [24], [25] runs inO(N2) time. Although approximate
algorithms [6], [7], [8], [12] can reduce the running time, they
are not efficient enough. The best-known approximate algo-
rithm [6], [12] on terrain surfaces runs in O((N +N ′) log(N +
N ′)) time, where N ′ is the number of Steiner points used for the
bound guarantee. Our experiments show that the best-known
exact algorithm [24], [25] (resp. approximate algorithm [6],
[12]) needs 11,600 s ≈ 3.2 hours (resp. 8,600 s ≈ 2.4 hours)
to calculate 100 shortest paths on a terrain surface with 0.5 M
faces.

2) Non-existence of oracles on updated terrain surfaces:
Although existing studies [5], [9], [10] can construct oracles
on static terrain surfaces, and can then answer P2P or A2A
queries efficiently, no study can accommodate updated terrain
surfaces, where the oracle needs to be updated efficiently. One
study [28] constructs an oracle on static point clouds that can be
adapted to static terrain surfaces for the P2P query by using the
on-the-fly algorithm on terrain surfaces [23], [24], [25], [26].
However, this oracle still cannot accommodate updated terrain
surfaces. When a terrain surface is updated, straightforward
adaptations of the best-known oracle [9], [10] for the P2P query,
the best-known oracle [5] for the A2A query, and the oracle [28]
for points clouds adapted to terrain surfaces for the P2P query
must re-construct the oracles. However, their oracle construction
times are O(nN2 + c1n), O(c2N

2), and O(c3nN
2 + n log n),

respectively, where n is the number of POIs, c1, c2, and c3 are
constants depending on T (c1 ∈ [35, 80], c2 ∈ [75, 154], and
c3 ∈ [3, 10] on average). In our experiments, oracle [9], [10]

(resp. adapted oracle [28]) needs 35,100 s ≈ 9.8 hours (resp.
28,100 s≈ 7.5 hours) for oracle construction on a terrain surface
with 0.5 M faces and 250 POIs, and oracle [5] needs 35,500 s≈
9.9 hours on a terrain surface with 100k faces.

C. Path Oracle on Updated Terrain Surfaces

We propose an efficiently updatable (1 + ε)-approximate
shortest path oracle, called Updatable Path Oracle (UP-Oracle),
for solving the updated terrain surfaces problem (given two
terrain surfaces before and after updates, i.e., Tbef and Taft, we
efficiently answer P2P queries on Taft by using shortest paths
on Tbef), where ε > 0 is the error parameter. We construct UP-
Oracle, efficiently update it, and find the shortest path using it in
Fig. 2(a) to (c), (d) to (f), and (g). UP-Oracle has state-of-the-art
performance in terms of the oracle update time, output size,
and shortest path query time (compared with the best-known
oracle [9], [10] for the P2P query on terrain surfaces) due to the
concise capture of pairwise P2P shortest paths. UP-Oracle can
be easily adapted to answering A2A queries on Taft (denoted
by UP-Oracle-A2A) and also has good performance (compared
with the best-known oracle [5] for the A2A query on terrain
surfaces).

1) Achieving a short oracle update time: The ideas for achiev-
ing a short oracle update time of UP-Oracle follow from (i) a
novel property, i.e., the non-updated terrain shortest path intact
property, and (ii) the useful information on Tbef , i.e., the stored
pairwise P2P exact shortest paths on Tbef when UP-Oracle is
constructed.

(i) Non-updated terrain shortest path intact property: In
Fig. 3, this property implies that given the light blue path between
u and v on Tbef (with distance d), if the distances from both u
and v to the updated faces are large enough (i.e., both larger than
d
2), then the path between u and v on Taft remains the same and
does not need to be updated.

(ii) Stored pairwise P2P exact shortest paths on Tbef : The
exact shortest distances are no larger than the approximate
shortest distances. So given an exact (resp. approximate) shortest
path with two endpoints u and v on Tbef , in the non-updated
terrain shortest path intact property in Fig. 3, it is likely (resp.
unlikely) that the distances from both u and v to the updated
faces are both larger than the exact (resp. approximate) length
of this path, and it reduces (resp. increases) the likelihood of
updating this path on Taft.

2) Efficiently achieving a small output size: Although we have
the pairwise P2P exact shortest paths on Taft, we aim to return
fewer paths to reduce the output size:

(i) Earthquake and avalanche: For the earthquake region with
ruins, rescue teams need to transport injured citizens from dam-
aged villages to unaffected hospitals. Since it is time-consuming
to build rescue paths in the earthquake region [29], fewer paths
imply that the total time to build rescue paths is smaller, enabling
the rescue teams to focus on saving lives. For other nearby
regions, trucks need to transfer medical materials to hospitals.
Rescue teams need to keep roads clear to avoid road blockages
caused by panic. Fewer paths imply that the number of rescue
teams needed for road maintenance is smaller, enabling an

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 559

Fig. 2. Framework overview.

Fig. 3. An unaffected path.

increased focus on saving lives. That is, given a complete graph
(with the POIs as vertices and with the exact shortest paths
between POIs on Taft as edges), we hope that UP-Oracle can
efficiently generate a sub-graph of it with a small output size.
But, we can store the complete graph in the hard disk for any
subsequent changes.

(ii) Marsquake: For Mars rovers, we only know the damaged
region after a quake, so the coverage of Tbef stored in Mars
rovers is large (e.g., the entire Mars surface), and similar to
Taft . NASA’s Mars 2020 rover has 256 MB memory and 2 GB
hard disk space [30], and it autonomously calculates paths [31].
Since the round trip signal delay between Earth and Mars is 40
minutes [32], it is time-consuming to send terrain information
captured by a rover after a quake to Earth, ask human experts
to find shortest escape paths, and then send the paths to Mars.
Before a quake, a rover stores the pairwise P2P exact shortest
paths on Tbef in the hard disk and transfers this to memory as
needed. After a quake, it needs to update the pairwise P2P exact
shortest paths on Taft and store this in a complete graph. It
then needs to efficiently generate a sub-graph for rescue path
calculation. Because our experiments show that for a terrain
surface with 250k faces and 250 POIs, the pairwise P2P exact
shortest paths on Tbef consume 127 MB, the complete graph
occupies 126 MB, and the sub-graph output from UP-Oracle
occupies 10 MB. When a rover starts to escape, it needs 210 MB
extra memory for different sensors to work [33]. Since 126 MB +
210 MB = 336 MB > 256 MB and 10 MB + 210 MB = 220 MB
< 256 MB, we can only fit the sub-graph in the memory of a
rover for escaping. We have sufficient memory for path updating
and sub-graph generation since 127 MB + 126 MB = 253 MB
< 256 MB and 126 MB + 10 MB = 136 MB < 256 MB, and
we can store the complete graph in the hard disk for subsequent
changes since 126 MB < 2 GB.

Generating a sub-graph from a complete graph is also used
in distributed systems for faster network synchronization [34]
and in wireless networks for faster signal transmission [35].
Specifically, given a complete graph and ε, the best-known

(1 + ε)-sub-graph generation algorithm [36] runs inO(n3 log n)
time, which is inefficient. A (1 + ε)-sub-graph has the property
that the distance between any pair of its vertices is at most (1 + ε)
times the exact distance. We propose a faster algorithm called
Hierarchy Greedy Spanner (HGSpan). Given a complete graph
and ε, we use a simpler structure to approximate the internal
graph for faster processing and generate a (1 + ε)-sub-graph.
Our experiments show that when n = 500 , our algorithm takes
24 s, while the best-known algorithm [36] takes 101 s.

We can also maintain a multi-layer structure. Long-range
queries can utilize the approximate results calculated using the
sub-graph, as the complete graph is excessively large. Short-
range queries can utilize exact results with higher accuracy.
In the earthquake and avalanche (resp. Marsquake) example,
dense population villages (resp. Mars rover frequent work re-
gions) can be regarded as short-range query regions, we use
the exact results for faster rescuing (resp. escaping). Depending
on different areas of villages or work regions, we can select
different Level-Of-Details (LODs) of short-range query regions
for customized querying.

D. Contributions and Organization

Our major contributions are as follows.
(1) We propose the first oracle, called UP-Oracle, for solving

the updated terrain surfaces problem. It achieves a short oracle
update time by satisfying the novel non-updated terrain shortest
path intact property, and by utilizing the useful information on
Tbef (the pairwise P2P exact shortest paths on Tbef). We also
propose four additional techniques to further reduce the oracle
update time. Designing an oracle on an updated terrain surface
with a small oracle update time is challenging: there are no ex-
isting solutions, and only limited information about Tbef can be
re-used. We also develop an efficient algorithm called HGSpan
to reduce the output size, and we adapt UP-Oracle for handling
subsequent changes, adapt UP-Oracle to UP-Oracle-A2A for
A2A queries, and adapt UP-Oracle to a multi-layer structure
called UP-Oracle Multi Layer (UP-Oracle-MuLa).

(2) We provide a thorough theoretical analysis of the oracle
construction time, oracle update time, output size, shortest path
query time, and error bound for these oracles.

(3) UP-Oracle performs much better than the best-known
oracle [9], [10] for the P2P query and UP-Oracle-A2A performs
much better than the best-known oracle [5] for the A2A query on
terrain surfaces in terms of the oracle update time, output size,
and shortest path query time. (i) For the P2P query on a terrain
surface with 0.5 M faces and 250 POIs, the oracle update time

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

560 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

and output size of UP-Oracle are 400 s ≈ 6.7 min and 22 MB,
while the values are 35,100 s ≈ 9.8 hours, and 250 MB for the
best-known oracle [9], [10], respectively, and (ii) the shortest
path query time for computing 100 shortest paths with different
sources and destinations is 0.1 s for UP-Oracle, while the time is
8,600 s ≈ 2.4 hours for the best-known approximate on-the-fly
algorithm [6], [12] and 0.3 s for the best-known oracle [9], [10].
(iii) For the A2A query on a terrain surface with 20 k faces,
the oracle update time, output size, and shortest path query
time for computing 100 shortest paths of UP-Oracle-A2A are
480 s ≈ 7 min, 3 MB and 0.05 s, while the values are 7,100 s
≈ 2 hours, 150 MB and 5 s for the best-known oracle [5],
respectively. The adapted UP-Oracle for subsequent changes
and UP-Oracle-MuLa also perform well.

The remainder of the paper is organized as follows. Section II
provides the preliminary. Section III discusses related work.
Section IV presents UP-Oracle. Section V covers the empirical
study, and Section VI concludes the paper.

II. PRELIMINARY

A. Notation and Definitions

1) Terrain surfaces and POIs: Consider a terrain surface
Tbef represented as a Triangulated Irregular Network (TIN) [8],
[9], [10], [27]. Let V , E, and F be the set of vertices, edges,
and faces of Tbef , respectively. Let Lmax be the length of the
longest edge in E. Let N be the number of vertices. Each vertex
v ∈ V has three coordinates, xv , yv, and zv. If the positions
of vertices in V are updated, we obtain a new terrain surface,
Taft. Figs. 1(c) and (d), and 2(a) and (d) show examples of Tbef

and Taft, respectively. There is no need to consider the case
when N changes because Tbef and Taft have the same 2D grid
with x× y = N vertices [8], [9], [10]. Specifically, for Tbef in
Fig. 2(a), given a fixed region, existing methods [1], [5], [10],
[27] sample a fixed set of points on Tbef on the 2D grid in the x-y
plane and use the elevations of these points as the z-coordinates,
yielding the final set of vertices on Tbef . For Taft in Fig. 2(d),
since we focus on the same region (although the shape of the
region on Taft may change), the set of points is fixed, and N is
also fixed. In the P2P query, let P be a set of POIs on Tbef and
n be the number of POIs. There is no need to consider when n
changes, or when n > N . The set of red points in Fig. 2(a) is
P . When a POI is added, we create an oracle that answers the
A2A query, which implies we consider all possible POIs to be
added. When a POI is removed, we continue to use the original
oracle. When n > N , we still create an oracle that answers the
A2A query.

2) Path: Given s and t in P , and a terrain surface T , let
Π(s, t|T) be the exact shortest path between s and t onT , and | · |
be the distance of a path (e.g., |Π(s, t|T)| is the exact distance
of Π(s, t|T) on T).

3) Updated and non-updated faces: Given Tbef , Taft, and P ,
a set of updated faces, denoted by ΔF , is defined to be a set of
faces ΔF = {f1, f2, . . . , f|ΔF |}, where fi is a face in F with
at least one of its three vertices’ coordinates differing between
Tbef and Taft, and |ΔF | is the number of faces in ΔF . It is easy
to obtain ΔF by comparing Tbef and Taft. In Fig. 1(d) (resp.
Fig. 2(d)), the yellow (resp. gray) region is ΔF based on Tbef

TABLE I
SUMMARY OF FREQUENTLY USED NOTATION

and Taft. There is no need to consider the case with two or more
disjoint non-empty sets of updated faces. If this happens, we can
create a larger set of faces that contains these disjoint sets. Thus,
in Figs. 1(d) and 2(d), the set of updated faces that we consider
is connected [37]. We say that a point (either a vertex or a POI)
is in ΔF if it is on a face in ΔF , and we say that a path passes
ΔF if any segment of this path is on a face ΔF . In Fig. 2(e), a
is in ΔF , and the purple path between a and b passes ΔF .

4) Disk: Given a point p on Tbef and a constant r > 0, let
D(p, r) be the disk centered at p with radius r, which consists
of all points on Tbef whose exact shortest distance to p is no
more than r. Given a face fi, if a point q exists on fi such that
the shortest distance between p and q is no more than r, then disk
D(p, r) intersects with face fi. Fig. 3 shows two disks centered
at u and v, both with radius |Π(u,v|Tbef)|

2 , that do not intersect
with any updated faces. Table I shows a summary of frequently
used notation.

B. Updated Terrain Surfaces Problem

Given Tbef , Taft, and P , the problem is to efficiently an-
swer P2P queries on Taft (using shortest paths on Tbef) with
|Π′(s, t|Taft)| ≤ (1 + ε)|Π(s, t|Taft)| for any s and t in P ,
where Π′(s, t|Taft) is the shortest path result between s and
t on Taft.

C. Non-Updated Terrain Shortest Path Intact Property

Property 1 describes an important property for solving the
updated terrain surface surfaces problem.

Property 1 (Non-Updated Terrain Shortest Path Intact Prop-
erty): In Fig. 3, given Tbef , Taft, and Π(u, v|Tbef), if two disks

D(u,
|Π(u,v|Tbef)|

2) and D(v,
|Π(u,v|Tbef)|

2) do not intersect with
ΔF , then Π(u, v|Taft) is the same as Π(u, v|Tbef).

Proof Sketch: We show by contradiction that the two paths
cannot be different. The detailed proofs in the remaining of this
paper appear in our technical report [38]. �

III. RELATED WORK

A. On-the-Fly Algorithms on Terrain Surfaces

Two types of algorithms can compute the shortest path on a
terrain surface on-the-fly.

1) Exact algorithms: The running times of the four exact
algorithms [23], [24], [25], [26] are O(N log2 N), O(N2),

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 561

O(N2), andO(N2 logN), respectively. They are Single-Source
All-Destination (SSAD) algorithms [5], [10], [23], [24], [25],
[26], i.e., given a source, they can calculate the shortest path
from it to all other vertices simultaneously. According to ex-
isting studies [1], [5], [10], [27], algorithm [23] that runs in
O(N log2 N) time is hard to implement (no implementation
exists). So, the implementable algorithm WAVefront on-the-Fly
Algorithm (WAV-Fly-Algo) [24], [25] that runs in O(N2) time
is recognized as the practical algorithm of choice. It uses a
continuous version of Dijkstra’s algorithm and needs to consider
continuous points on the edges of the terrain surface by unfolding
the 3D terrain surface into a 2D plane (which is not needed in
the plain Dijkstra’s algorithm) during wavefront propagation, so
its running time cannot be reduced to O(N logN) in the plain
Dijkstra’s algorithm. WAV-Fly-Algo comes in two variants with
the same time complexity: an initial version [25] and an extended
version [24] with better empirical running time.

2) Approximate algorithms: Approximate algorithms [6], [7],
[8], [12] aim to reduce the running time. The best-known approx-
imate algorithm Efficient Steiner Point on-the-Fly Algorithm
(ESP-Fly-Algo) [6], [12] on terrain surfaces places Steiner
points on edges in E, and then constructs a graph using
these points and V to calculate a (1 + ε)-approximate shortest
path on a terrain surface using Dijkstra’s algorithm. It runs
in O(lmaxN

εlmin

√
1−cos θ log(

lmaxN
εlmin

√
1−cos θ)) time, where lmax (resp.

lmin) is the length of the longest (resp. shortest) edge of T , and
θ is the minimum inner angle of any face in F . Algorithm [6]
runs on an unweighted terrain surface and algorithm [12] runs
on a weighted terrain surface where each terrain surface face is
assigned a weight. They are the same if we set the weight of
each face in algorithm [12] to be 1, so we regard them as one
algorithm.

Drawback: All these algorithms are inefficient for comput-
ing multiple shortest path queries. Our experiments show that
WAV-Fly-Algo and ESP-Fly-Algo need 11,600 s ≈ 3.2 hours,
and 8,600 s ≈ 2.4 hours to compute 100 paths with different
sources and destinations on a terrain surface with 0.5 M faces,
respectively.

B. Oracle-Based Algorithms on Terrain Surfaces

The Well-Separated Pair Decomposition Oracle (WSPD-
Oracle) [9], [10] (resp. the Efficiently ARbitrary pints-to-
arbitrary points Oracle (EAR-Oracle) [5]) is regarded as the
best-known oracle for answering approximate P2P (resp. A2A)
queries on terrain surfaces. Further, an existing oracle [28], origi-
nally designed for answering approximate P2P queries on point
clouds, can be adapted to the Rapid-Constuction TIN Oracle
(RC-TIN-Oracle) for answering approximate P2P queries on
terrain surfaces [28]. Yet, no existing oracle can accommodate
updated terrain surfaces, where the oracle needs to be updated
efficiently. A straightforward adaption is to re-construct them
from scratch when the terrain surface is updated. A smart
adaption is to leverage Property 1 in UP-Oracle, such that we
only re-calculate the paths on Taft that require updating to
reduce the oracle update time. We denote the adapted oracles as
WSPD-UP-Oracle, EAR-UP-Oracle, and RC-TIN-UP-Oracle.

1) WSPD-Oracle and WSPD-UP-Oracle: These use a com-
pressed partition tree, algorithm SSAD, and well-separated node
pair sets to index the (1 + ε)-approximate pairwise P2P short-
est paths. (i) WSPD-Oracle’s oracle construction time, output
size, and shortest path query time is O(nN

2

ε2β
+ nh

ε2β
+ nh log n),

O(nh
ε2β

), and O(h2), respectively, where h is the height of the
compressed partition tree and β ∈ [1.5, 2] is the largest capacity
dimension [39]. (ii) WSPD-UP-Oracle’s oracle update time is
O(μ1N

2 + n log2 n), where μ1 is a data-dependent variable,
and μ1 ∈ [5, 20] in our experiments.

2) EAR-Oracle and EAR-UP-Oracle: These use the same idea
as WSPD-Oracle and WSPD-UP-Oracle, i.e., well-separated
pair decomposition. Their differences are that they adapt WSPD-
Oracle and WSPD-UP-Oracle from the P2P query to the
A2A query by using Steiner points on the terrain faces and
using highway nodes (i.e., not POIs in WSPD-Oracle and
WSPD-UP-Oracle) for well-separated pair decomposition. (i)
EAR-Oracle’s oracle construction time, output size, and short-
est path query time is O(λξ(mN)2 + N3

ε2β
+ Nh

ε2β
+Nh logN),

O(λmN
ξ + Nh

ε2β
), and O(λξ log(λξ)), respectively, where λ is

the number of highway nodes in one square, ξ is the square
root of the number of boxes, and m is the number of Steiner
points per face. (ii) EAR-UP-Oracle’s oracle update time is
O(μ2N

2 + n log2 n), where μ2 is a data-dependent variable,
and μ2 ∈ [12, 45] in our experiments.

3) RC-TIN-Oracle and RC-TIN-UP-Oracle: These use path
and endpoint map tables to index the (1 + ε)-approximate
pairwise P2P shortest paths. (i) RC-TIN-Oracle’s oracle con-
struction time, output size, and shortest path query time is
O(nN logN

ε + n log n),O(nNε), andO(1), respectively. (ii) RC-
TIN-UP-Oracle’s oracle update time is O(μ3N

2 + n log2 n),
where μ3 is a data-dependent variable, and μ3 ∈ [30, 65] in our
experiments.

Drawbacks: (i) WSPD-Oracle, EAR-Oracle, and RC-TIN-
Oracle only support the static terrain surface and do not address
how to update the oracle on an updated terrain surface, since
they do not utilize Property 1. (ii) Although WSPD-UP-Oracle,
EAR-UP-Oracle, and RC-TIN-UP-Oracle utilize Property 1,
they do not fully utilize it. Since they only store the pairwise
P2P approximate shortest paths on Tbef , the oracle update
time remains large. (iii) In the P2P query, the oracle update
time for WSPD-Oracle, WSPD-UP-Oracle, RC-TIN-Oracle,
RC-TIN-UP-Oracle, and UP-Oracle are 35,100 s ≈ 9.8 hours,
8,400 s≈ 2.4 hours, 28,100 s≈ 7.5 hours, 10,100 s≈ 2.9 hours,
and 400 s≈ 6.7 min on a terrain dataset with 0.5 M faces and 250
POIs, respectively. In the A2A query, the oracle update time for
EAR-Oracle, EAR-UP-Oracle, and UP-Oracle-A2A are 7,100 s
≈ 2 hours, 4,300 s ≈ 1.2 hours, and 480 s ≈ 7 min on a terrain
surface with 20 k faces, respectively.

C. Sub-Graph Generation Algorithms

Given a complete graph and ε, algorithm Greedy Spanner
(GSpan) [36] that runs in O(n3 log n) time is the best-known
(1 + ε)-sub-graph generation algorithm. Given a (1 + ε′)-sub
-graph and ε, where ε ≥ ε′ > 0, algorithm Sparse Greedy
Spanner (SGSpan) [40] uses a simpler structure to approximate

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

562 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

the internal graph for faster processing and generates a (1 + ε)-
sub-graph.

Drawbacks: (i) Algorithm GSpan is very slow since it does
not use any simpler structure to approximate the internal graph
when performing Dijkstra’s algorithm [41] on the sub-graph.
(ii) Although algorithm SGSpan uses a simpler structure for
approximation, it cannot take a complete graph, i.e., ε′ = 0, as
input. If we force ε′ = 0 , algorithm SGSpan degenerates to
algorithm GSpan. (iii) On a terrain surface with 0.5 M faces and
500 POIs, algorithm HGSpan uses 24 s to generate a (1 + ε)
-sub-graph of size 44 MB, but algorithm GSpan uses 101 s to
generate a (1 + ε)-sub-graph of size 41 MB.

IV. METHODOLOGY

A. Overview of UP-Oracle

1) Components: UP-Oracle has three components.
(i) The temporary graph G is a complete graph that stores the

pairwise P2P exact shortest paths. Let G.V and G.E be the sets
of vertices and edges of G (where each POI in P is denoted by a
vertex in G.V). Given a pair of POIs u and v, the exact shortest
path Π(u, v|T) on T is denoted by an edge e(u, v|T) in G.E
with a weight |e(u, v|T)| = |Π(u, v|T)|, where T can be Tbef

or Taft. Fig. 2(b) shows a G with 4 vertices and 6 edges. The
light blue edge e(a, c|Tbef) in G denotes a path Π(a, c|Tbef).

(ii) POI-to-vertex distance table Mdist is a hash table [42]
that stores the exact shortest distance from each POI in P to
each vertex in V on Tbef , used for reducing the oracle update
time of UP-Oracle. A vertex u and a POI v is stored as a key
〈u, v〉, and the distance between them |Π(u, v|Tbef)| is stored
as a value. In Fig. 2(c), the exact shortest distance between POI
a and vertex v1 is 4.

(iii) The UP-Oracle output graph G′ is a sub-graph of G used
for answering pairwise P2P (1 + ε)-approximate shortest paths.
LetG′.V andG′.E be the set of vertices and edges ofG′. Given a
pair of vertices u and v inG′.V , let e′(u, v|Taft) be an edge with
a weight |e′(u, v|Taft)|, and let ΠG′(u, v|Taft) be the shortest
path onG′. Fig. 2(f) shows aG′ with 4 edges. The light blue edge
e′(a, c|Taft) inG′ denotes a pathΠ(a, c|Taft). The shortest path
ΠG′(a, b|Taft) consists of edges e′(a, c|Taft) and e′(c, b|Taft).

2) Phases: UP-Oracle has three phases.
(i) Construction phase: Given Tbef and P , considering each

POI in P as the source, we use algorithm SSAD [5], [10], [23],
[24], [25], [26] to simultaneously: (1) calculate the exact shortest
paths between this POI and other POIs onTbef , and store these in
G, and (2) calculate the exact shortest distance between this POI
and all vertices on Tbef , and store these in Mdist. In Fig. 2(b)
and (c), we first use algorithm SSAD with a as the source to
calculate paths between a and {b, c, d} (the light blue paths),
and distances between a and all vertices. Next, we use b, c as
sources and repeat this.

(ii) Update phase: Given Tbef , Taft, P , G, and Mdist, we
efficiently update paths on Taft in G and produce G′:
� Detect updated terrain surface: Given Tbef and Taft, we

compare the coordinates of their vertices to detect ΔF .
� Update exact shortest path: Given Taft, P , G, Mdist, and
ΔF , we select some POIs in P as sources in algorithm

SSAD to update the exact shortest paths on Taft if Prop-
erty 1 is not satisfied for paths connecting to these POIs,
and we update G. In Fig. 2(e), we use a as the source to
update paths between a and {b, c, d} (the purple paths).
Fig. 4 shows more details. In Fig. 4(a) to (c), since a is on
a face in ΔF , the path with b as the source passes on ΔF ,
and the blue diskD(h,

|Π(c,h|Tbef)|
2) centered ath intersects

with ΔF , Property 1 is not satisfied for all possible paths
connecting a, b, h. So, we use them as sources in algorithm
SSAD for path updating on Taft, and we update G. In
Fig. 4(d) and (e), Property 1 is satisfied, and path update is
not needed. We give more details in Section IV-B.

� Generate sub-graph: Given G and ε, we use algorithm
HGSpan to efficiently generateG′ for output size reduction,
such that |ΠG′(s, t|Taft)| ≤ (1 + ε)|Π(s, t|Taft)| for any
pair of POIs s and t in P . In Fig. 2(f), we obtain G′ from
G. We give more details in Section IV-C.

(iii) Query phase: Given G′, and a pair of POIs s and t in P ,
we use Dijkstra’s algorithm to find the shortest path between s
and t on G′, i.e., ΠG′(s, t|Taft). In Fig. 2(g), given a source a
and a destination b, we calculate ΠG′(a, b|Taft), see the green
path.

B. Update Phase: Update Exact Shortest Path Step

UP-Oracle has a short oracle update time due to our design
in the update exact shortest path step of the update phase.

1) Method: Recall from Section I-C that the short oracle up-
date time is mainly enabled by the non-updated terrain shortest
path intact property in Property 1, and the stored pairwise P2P
exact shortest paths on Tbef . We consider three additional issues
and propose four techniques (one for each of the first two issues,
and two for the third issue) to further reduce the oracle update
time.

(i) Which POI to select first for path updating before Prop-
erty 1 is utilized - Optimal POI selection sequence: In Fig. 4(a)
to (c), (i) a is in ΔF , (ii) one of b’s exact shortest paths,
Π(b, h|Tbef), passes ΔF , and (iii) h is near ΔF . As Property 1
is not satisfied for the paths connecting a, b, h, we use a as the
source in algorithm SSAD to update the paths on Taft to other
POIs simultaneously, and repeat this for b and h. In Fig. 4(d) and
(e), Property 1 is satisfied, so we do not need to use algorithm
SSAD with f and d as sources. Here, we only need to use
algorithm SSAD 3 times, and the optimal sequence is selecting
the POIs: (i) on a face in ΔF , (ii) connecting to the path passing
ΔF , and (iii) near ΔF (corresponding to the sequence a, b, h).
But, if we do not use this optimal sequence, e.g., we first update
the paths with c, d, e, f, g as sources, then we still need to update
the paths with a, b, h as sources. Here, we need to use algorithm
SSAD 8 times. Note that the sequence only aims to identify the
POI to select first as the source in algorithm SSAD, and we still
update paths in parallel (as in the construction phase).

(ii) Which disk radius to use in Property 1 - Minimum disk
radius: In Property 1, we use half of the distance between
a pair of POIs as the disk radius to reduce the likelihood of
re-calculating shortest paths on Taft. But, if we do not use this

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 563

Fig. 4. In the update phase when (a) updating Π(a), (b) updating Π(b), (c) updating Π(h), (d) no need for updating Π(f), and (e) no need for updating Π(d).

minimum disk radius, we need to use the full distance. This
increases the likelihood of updating this path on Taft.

(iii) How to efficiently determine whether Property 1 is sat-
isfied - Efficient distance approximation: In Fig. 4(c), given h,
let i be the point belonging to ΔF that is closest to h, and let
j be the vertex in ΔV that is closest to h. When determining
whether Property 1 is satisfied, for the path between h and c, we
determine whether the blue disk D(h, r) intersects with ΔF

(where r =
|Π(h,c|Tbef)|

2), by efficiently determining whether
r < |Π(h, j|Tbef)| − Lmax in O(1) time (where |Π(h, j|Tbef)|
is stored in Mdist). If so, r < |Π(h, i|Taft)|, i.e., Property 1
is satisfied, and we do not need to update the path, since
we have the distance approximation |Π(h, j|Tbef)| − Lmax ≤
|Π(h, i|Taft)| from the triangle inequality. Otherwise, we update
the path. But, if we do not use this efficient approximation, we
need to calculate |Π(h, i|Taft)| using algorithm SSAD inO(N2)
time.

(iv) How to efficiently determine whether Property 1 is sat-
isfied - Efficient disk and updated face intersection check: In
Fig. 4(c), we sort the third type of POI in the optimal POI
selection sequence from near to far based on their minimum
distance to any vertex in ΔV on Tbef using Mdist. Thus,
we get the ordering h, f, e, d, c, g. When determining whether
Property 1 is satisfied, we just need to create one blue disk
D(h, r) (where r =

|Π(h,c|Tbef)|
2 is half of the longest distance

of the paths between h and each POI in {c, d, e, f, g}), and
determine whether it intersects with ΔF . If the disk with the
largest radius and with the center closest to ΔF intersects with
ΔF , Property 1 is not satisfied and there is no need to check
other disks. Otherwise, Property 1 is always satisfied. In total,
there are O(n) POIs, we need to create O(n) disks for efficient
checking. But, if we do not use this efficient checking, we need to
create ten disks, i.e., five disksD(h,

|Π(X,h|Tbef)|
2) and five disks

D(X,
|Π(X,h|Tbef)|

2) for checking, where X ∈ {c, d, e, f, g}. In
total, there are O(n2) paths, it needs to create O(n2) disks.

2) Algorithm: Before we provide the algorithm, we in-
troduce some notation. Let Prem = {p′1, p′2, . . . , p′|Prem|} be
a set of remaining POIs in P on Taft that we have
not processed, where |Prem| is the number of POIs in
Prem. Prem is initialized to be P . In each update itera-
tion, when we have processed a POI, we remove it from
Prem. In Fig. 4(a) and (b), Prem = {b, c, d, e, f, g, h} and
Prem = {c, d, e, f, g, h}. Given a POI u ∈ Prem, let Π(u) =
{Π(u, v1|Tbef),Π(u, v2|Tbef), . . . ,Π(u, v|Π(u)||Tbef)} be a set
of the exact shortest paths stored in G on Tbef with u as an
endpoint and each vi ∈ Prem \ {u} as the other endpoint, such
that these paths have not been updated. Π(u) is initialized to be

Algorithm 1: OnePoiUpdate (Taft, G, u, Prem).

Input: Taft, G, a POI u, and Prem

Output: updated G and updated Prem

1: use u as the source in algorithm SSAD to calculate
Π(u, v|Taft) for each POI v ∈ Prem simultaneously

2: for each POI v ∈ Prem do
3: G.E ← G.E − {Π(u, v|Tbef)} ∪ {Π(u, v|Taft)}
4: Π(v)← Π(v)− {Π(u, v|Tbef)}
5: Prem ← Prem − {u}
6: return updated G and Prem

all the exact shortest paths stored in G with u as an endpoint,
where |Π(u)| is the number of paths in Π(u). In Fig. 4(a) to (c),
the purple paths denote Π(a), Π(b), and Π(h). We summarize
the methods in Algorithms 1 and 2.

3) Example: Algorithm 1 is used in three places in Algo-
rithm 2. The following is an example of them.

(i) Initialize Prem and Π(u): Lines 1–3. In Fig. 4(a),
we initialize Prem = {a, b, c, d, e, f, g, h}, Π(a) =
{Π(a, b|Tbef),Π(a, c|Tbef), . . . ,Π(a, h|Tbef)}, Π(b) =
{Π(b, a|Tbef),Π(b, c|Tbef), . . . ,Π(b, h|Tbef)}, . . . , and
Π(h) = {Π(h, a|Tbef),Π(h, b|Tbef), . . . ,Π(h, g|Tbef)}. Next,
we use the optimal POI selection sequence for path updating.

(ii) Path update for POI in ΔF : Lines 4–6. In Fig. 4(a), a
is on a face in ΔF , so Property 1 is not satisfied. We first use
OnePoiUpdate (Taft, G, a, Prem) to update the purple paths
on Taft, and update G. Then, we remove Π(a,X|Tbef) in
Π(X) for each X ∈ Prem, so Π(a) becomes empty, Π(b) =
{Π(b, c|Tbef),Π(b, d|Tbef), . . . ,Π(b, h|Tbef)}, . . . , and
Π(h) = {Π(h, b|Tbef),Π(h, c|Tbef), . . . ,Π(h, g|Tbef)}. Fi-
nally, we remove a fromPrem to getPrem = {b, c, d, e, f, g, h}.

(iii) Path update for POI connecting to the path passing
ΔF : Lines 7–9. In Fig. 4(b), b is not on any face in ΔF ,
but Π(b, g|Tbef) and Π(b, h|Tbef) in Π(u) pass ΔF , so
Property 1 is not satisfied. We first use OnePoiUpdate
(Taft, G, b, Prem) to update the purple paths on Taft,
and update G. Then, we remove Π(b, c|Tbef) in Π(c)
for each X ∈ Prem, so Π(a) and Π(b) become empty,
Π(c) = {Π(c, d|Tbef),Π(c, e|Tbef), . . . ,Π(c, h|Tbef)}, . . . ,
and Π(h) = {Π(h, c|Tbef),Π(h, d|Tbef), . . . ,Π(h, g|Tbef)}.
Finally, we remove b fromPrem to getPrem = {c, d, e, f, g, h}.

(iv) Path update for POI near ΔF : Lines 10–16.
� In Fig. 4(c), the sorted POIs are h, f, e, d, c, g. We process
h, and the path with the longest distance is Π(c, h|Tbef).
Since Property 1 with the minimum disk radius is not

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

564 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

Algorithm 2: Update (Taft, P,G,Mdist,ΔF).

Input: Taft, P , G, Mdist, and ΔF
Output: updated G
1: Prem ← P
2: for each POI u ∈ Prem do
3: Π(u)← all the exact shortest paths in G with u as

an endpoint
4: for each POI u ∈ Prem do
5: if u is on a face in ΔF (i.e., Property 1 is not

satisfied) then
6: OnePoiUpdate (u, Taft, G, Prem)
7: for each POI u ∈ Prem do
8: if u is not on any face in ΔF but there exists an

exact shortest path in Π(u) that passes ΔF (i.e.,
Property 1 is not satisfied) then

9: OnePoiUpdate (u, Taft, G, Prem)
10: sort each POI in Prem from near to far based on their

minimum distance to any vertex in ΔV on Tbef using
Mdist

11: for each sorted POI u ∈ Prem do
12: v ← a POI in Prem such that Π(u, v|Tbef) has the

longest distance among all Π(u)
13: if Property 1 is satisfied, i.e., only one disk

D(u, |Π(u,v|Tbef)
2 |) does not intersect with ΔF by

checking
|Π(u,v|Tbef)

2 | < min∀w∈ΔV |Π(u,w|Tbef)| − Lmax,
where |Π(u,w|Tbef)| can be retrieved from Mdist

do
14: Prem ← Prem − {u}
15: else
16: OnePoiUpdate (u, Taft, G, Prem)
17: return updated G

satisfied, i.e., only one blue disk intersects withΔF (deter-
mined by checking |Π(h,c|Tbef)

2 | > |Π(h, j|Tbef)| − Lmax

according to efficient distance approximation and
efficient disk and updated face intersection check),
we first use OnePoiUpdate (Taft, G, h, Prem) to update
the purple paths on Taft, and update G. Then, we
remove Π(h,X|Tbef) in Π(X) for each X ∈ Prem,
so Π(a), Π(b) and Π(h) become empty, Π(c) =
{Π(c, d|Tbef),Π(c, e|Tbef), . . . ,Π(c, g|Tbef)}, . . . , and
Π(g) = {Π(g, c|Tbef),Π(g, d|Tbef), . . . ,Π(g, f |Tbef)}.
Finally, we remove h from Prem to get Prem =
{c, d, e, f, g}.

� In Fig. 4(d), the sorted POIs are f, e, d, c, g. We process
f , and the paths with the longest distance is Π(c, f |Tbef).
Since Property 1 is satisfied, i.e., the blue disk does not
intersect withΔF (determined by checking |Π(f,c|Tbef)

2 | <
min∀v∈ΔV |Π(f, v|Tbef)| − Lmax), we do not need to up-
date the paths connect to f . We remove f from Prem to
getPrem = {c, d, e, g}. Then, the sorted POIs are e, d, c, g,
and we process e similar to above.

� In Fig. 4(e), the case is also similar.

4) Lemma: We give three important lemmas as follows.
(i) Necessity of storing the pairwise P2P exact shortest paths

(i.e., G) on Tbef : Let U(A) be the Update ratio of an oracle
A, which is defined as the number of POIs in P that need
to be used as a source in algorithm SSAD (for path updating
on Taft) divided by the total number of POIs. In Fig. 4(a) to
(c), we use algorithm SSAD with a, b, h as sources to update
shortest paths on Taft for UP-Oracle, and WSPD-UP-Oracle.
In Fig. 4(d), UP-Oracle (resp. WSPD-UP-Oracle) calculates
an exact (resp. approximate) path between c and f on Tbef .
The disk radius centered at f is smaller (resp. larger), so the
disk does not (resp. may) intersect with ΔF , and UP-Oracle
does not need to (resp. WSPD-UP-Oracle may need to) use
algorithm SSAD with f as source to update shortest paths on
Taft. The case also happens for the paths between c and e. In
Fig. 4(e), the case also happens for the path between g and each
POI in {c, d}. Thus, for UP-Oracle (resp. WSPD-UP-Oracle),
we perform algorithm SSAD with three POIs a, b, h (resp. seven
POIs a, b, c, d, e, f , g) as sources for path updating on Taft.
As there is a total of eight POIs, U(UP −Oracle) = 3

8 (resp.
U(WSPD − UP −Oracle) = 7

8). The oracle update time of
WSPD-UP-Oracle is 2.4 times larger than that of UP-Oracle.
RC-TIN-UP-Oracle is similar to WSPD-UP-Oracle. Given an
oracle A, a higher U(A) means that the oracle update time of A
is larger. Lemma 1 shows the necessity of storing G.

Lemma 1: Given Tbef , Taft, P , and an oracle A that does
not store the pairwise P2P exact shortest paths on Tbef ,
U(UP −Oracle) ≤ U(A).

Proof: By storing G, we can minimize the likelihood of up-
dating the paths on Taft, so U(UP −Oracle) is the smallest.�

(ii) Correctness of the efficient distance approximation: In
the distance approximation, we have “|Π(h, j|Tbef)| − Lmax ≤
|Π(h, i|Taft)| due to the triangle inequality” in Fig. 4(c).
Lemma 2 shows the correctness of this inequality, implying
that the correctness of the efficient distance approximation. In
Lemma 2, u can be h, any point on a face in ΔF can be i, and
v can be j in Fig. 4(c).

Lemma 2: The minimum distance from a POI u to any point
on a face in ΔF on Taft is at least min∀v∈ΔV |Π(u, v|Tbef)| −
Lmax.

Proof Sketch: We show that the minimum distance from u to
a point of e on Taft is the same as on Tbef , where e is an edge
that belongs to a face in ΔF , and that the exact shortest path
from u to ΔF intersects with any point on e for the first time.
Then, we use the triangle inequality to prove it. �

(iii) Correctness of the efficient disk and updated face in-
tersection check: In the intersection check, we just need to
create one blue disk D(h, r) (where r =

|Π(h,c|Tbef)|
2 is half

of the longest distance of the paths between h and each POI
in {c, d, e, f, g}), and determine whether it intersects with ΔF
in Fig. 4(c), instead of creating ten disks. Lemma 3 shows
the correctness of this check. The disk in Lemma 3 can be
D(h,

|Π(h,c|Tbef)|
2) in Fig. 4(c).

Lemma 3: If the disk, centered at u, with radius equal to half
of the longest distance among all non-updated paths adjacent to
u, intersects with ΔF , Property 1 is not satisfied, and we need

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 565

Fig. 5. (a) UP-Oracle output graph G′ and (b) hierarchy graph H of G′.

to use algorithm SSAD to update all non-updated paths adjacent
to u. Otherwise, Property 1 is satisfied, and there is no need to
update shortest paths adjacent to u.

Proof Sketch: If the disk with the largest radius intersects
with ΔF , Property 1 is not satisfied, and there is no need to
check other disks. If the disk with the largest radius and with
the center closest to ΔF does not intersect with ΔF , then other
disks cannot intersect with ΔF , and Property 1 is satisfied. �

C. Update Phase: Generate Sub-Graph Step

UP-Oracle can efficiently reduce the output size due to our
design in the generate sub-graph step (using algorithm HGSpan)
of the update phase. Due to this, the output size of UP-Oracle is
44 MB on a terrain surface with 0.5 M faces and 500 POIs, but the
value is 520 MB for WSPD-Oracle and 416 MB RC-TIN-Oracle.

1) Concept: The hierarchy graph H is a graph that has a sim-
pler structure than G′, and it is used for efficiently generating G′

usingG. LetQG′ be a group of vertices inG′.V with group center
v ∈ QG′ and radius r, such that for every vertex u ∈ QG′ , we
have |ΠG′(u, v|Taft)| ≤ r. A set of groups Q1

G′ , Q
2
G′ , . . . , Q

k
G′

is a group cover of G′ if every vertex in G′.V belongs to at least
one group, where k is the number of groups. H can form a set of
groups by regarding several vertices in G′ that are close to each
other as one vertex. As a result, H is an approximation of G′.
Similar to G′, let H.E be the set of edges of H . Given a group
Qi

G′ , let the intra-edges be the set of edges connecting the group
center of Qi

G′ to all other vertices in Qi
G′ , and let the inter-edges

be the set of edges connecting two group centers. Given a pair
of vertices u and v in H.E, let eH(u, v|Taft) be an (intra- or
inter-) edge with a weight |eH(u, v|Taft)|. Given a pair of group
centers s and t, let ΠH(s, t|Taft) be the shortest path between
them in H that only consists of inter-edges. Fig. 5(a) and (b)
show a G′ and its corresponding H . There are three groups with
centers c, e, g in H . The light blue paths are intra-edges and the
purple paths are inter-edges. The shortest path ΠH(c, g|Taft)
consists of edges eH(c, e|Taft) and eH(e, g|Taft).

2) Method: We introduce algorithm HGSpan as follow.
(i) Why algorithm HGSpan is efficient: Given a complete

graph G and ε, algorithm HGSpan sorts edges in G based on
their length in ascending order, and we initialize sub-graph G′

to be empty. For each sorted edge in G.E, e.g., |e(c, h|Taft)|
in Fig. 5(a), if |ΠG′(c, h|Taft)| > (1 + ε)|e(c, h|Taft)|, it is
inserted into G′, where |ΠG′(c, h|Taft)| is approximated by
the distance between the group centers of c and h on H , i.e.,
|ΠH(c, g|Taft)| in Fig. 5(b). It is calculated using Dijkstra’s

algorithm in O(1) time. But, if we do not use H for approxi-
mation, we need to use Dijkstra’s algorithm on G′ to calculate
|ΠG′(c, h|Taft)| inO(n log n) time, as in algorithm GSpan [36].
We repeat this for all edges in G, and return G′ as the output.

(ii) How to construct H: To construct H , we sort the edges in
G based on their length in ascending order. We then divide them
into log n intervals, where each interval contains edges with
lengths in (2

i−1D
n , 2iD

n] for i ∈ [1, log n] and D is the length
of the longest edge in G. In Fig. 5(b), for the i-th iteration,
we select c, e, g as group centers and create groups with radius

δ 2iD
n , where δ =

√
ε2+36ε+36−(ε+6)

24 ∈ (0, 1
2) since ε ∈ (0,∞).

We insert intra-edges (light blue paths) into H between each
group center and vertices in this group, and we insert inter-edges
(solid purple paths) intoH between every two group centers such
that the distances between them onG′ are at most 2iD

n + 2δ 2iD
n .

Then, we use H to approximate G′. For each sorted edge in
G with length in the current length interval, e.g., e(c, h|Taft)
in Fig. 5(a), if |ΠG′(c, h|Taft)| > (1 + ε)|e(c, h|Taft)|, where
|ΠG′(c, h|Taft)| is approximated by |ΠH(c, g|Taft)|, we insert
this edge (dashed light blue path) intoG′ and also insert an inter-
edge between the group centers of c and h, i.e., eH(c, g|Taft)
(dashed purple path), into H . Having processed all edges in the
current length interval, for the (i+ 1)-st iteration, we repeat the
above process to re-constructH , so thatH is a valid approximate
graph of G′. But, in algorithm SGSpan [40], if we force it to
use a complete graph as input, the radius of each group in H
becomes 0, and it degenerates to algorithm GSpan. In algorithm
HGSpan, we use a different process to constructH (i.e., we insert
inter-edges intoH at two different stages: one before processing
edges in G, and another one during this process), and we set the
radius of each group in H to exceed 0 (i.e., δ 2iD

n > 0 since
δ > 0), to avoid the degeneration by sacrificing the output size.

3) Algorithm: Algorithm 3 details HGSpan.
4) Example: The following is an example of Algorithm 3.
(i) Sort edge, split interval, and initialize G′: Lines 2–6. We

insert edges of G with lengths in I0 = (0, D
N] into G′.

(ii) Construct G′: Lines 7–25, let i = 1 and we clear H .
� Lines 9–15 (construct group and insert intra-edge intoH):

When i = 1, there is a limited number of edges in G′, i.e.,
most pairs of vertices inG′.V are not connected by an edge.
It is likely that every vertex in G′.V forms a group itself
in H , and there are no intra-edges in H since each group
only contains one vertex.

� Lines 16–19 (insert first type inter-edge intoH): Similarly,
it is likely that there are no inter-edges in H .

� Lines 20–25 (insert edge intoG′ and second type inter-edge
into H): For each edge e(u, v|Taft) in G with a weight in
I1 = (DN , 2D

N], it is likely that the group center of u (resp.
v) in H is u (resp. v) itself, i.e., w = u and x = v. Since
there is a limited number of edges in G′, line 23 is likely
true, and we insert e(u, v|Taft) into G′ and eH(w, x|Taft)
into H .

(iii) Continuing constructG′: Lines 7–25, we repeat the above
process. Suppose that we start the i-th iteration and we clear H .
� Lines 9–15: Suppose that we haveG′ as shown in Fig. 5(a).

Based on G.V , we create three groups with centers c, e, g

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

566 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

Algorithm 3: HGSpan (G, ε).
Input: G and ε
Output: G′ (a sub-graph of G)
1: D ← the length of the longest edge in G.E
2: for each edge e(u, v|Taft) ∈ G.E do
3: sort edge length in increasing order
4: create intervals I0 = (0, D

N], Ii = (2
i−1D
n , 2iD

n] for
i ∈ [1, log n]

5: G.Ei ← sorted edges of G.E with length in Ii
6: G′.E ← G.E0

7: for i← 1 to log n do
8: H.E ← ∅
9: for each uj ∈ G.V that has not been visited do

10: perform Dijkstra’s algorithm on G′, such that the
algorithm never visits vertices further than δ 2iD

n
from uj

11: create group Qj
G′ ← {uj} with group center uj ,

uj ← visited
12: for each v ∈ G.V such that

|ΠG′(uj , v|Taft)| ≤ δ 2iD
n do

13: Qj
G′ ← {v}, v ← visited

14: H intra-edges← H.E ∪ {eH(uj , v|Taft)},
where |eH(uj , v|Taft)| = |ΠG′(uj , v|Taft)|

15: j ← j + 1
16: for each group center uj do
17: perform Dijkstra’s algorithm on G′, such that the

algorithm never visits vertices further than
2iD
n + 2δ 2iD

n from uj

18: H inter-edges← H.E ∪ {eH(uj , u|Taft)}, where
u is other group centers and
|eH(uj , u|Taft)| = |ΠG′(uj , u|Taft)|

19: j ← j + 1
20: for each edge e(u, v|Taft) ∈ G.Ei do
21: w ← group center of u, x← group center of v
22: ΠH(w, x|Taft)← the shortest path between w

and x calculated using Dijkstra’s algorithm on H
23: if |ΠH(w, x|Taft)| > (1 + ε)|e(u, v|Taft)| then
24: G′.E ← G′.E ∪ {e(u, v|Taft)}
25: H inter-edge← H.E ∪ {eH(w, x|Taft)}, where

|eH(w, x|Taft)| = |eH(w, u|Taft)|+
|e(u, v|Taft)|+ |eH(v, x|Taft)|

26: return G′

in H , see Fig. 5(b). We insert intra-edges eH(a, c|Taft),
. . . , eH(g, i|Taft) (light blue paths) into H in Fig. 5(b).

� Lines 16–19: We insert inter-edges eH(c, e|Taft) and
eH(e, g|Taft) (solid purple paths) into H , see Fig. 5(b).

� Lines 20–25: Suppose that we need to examine edge
e(c, h|Taft) in G in Fig. 5(a) with a weight in Ii =

(2
i−1D
n , 2iD

n], and the group center of c (resp. h) in H is c
(resp. g). Then, we check whether |ΠH(c, g|Taft)| > (1 +
ε)|e(c, h|Taft)|. If so, we insert edge e(c, h|Taft) (dashed
light blue path) intoG′, and insert inter-edge eH(c, g|Taft)
(dashed purple path) with a weight |e(c, g|Taft)|+
|eH(g, h|Taft)| into H . Next, we repeat this by starting the
(i+ 1)-st iteration and clearH . This way, we constructG′.

5) Lemma: Lemma 4 analyzes algorithm HGSpan.
Lemma 4: The running time of HGSpan is O(n log2 n). The

output of HGSpan, i.e., G′, satisfies |ΠG′(u, v|Taft)| ≤ (1 +
ε)|Π(u, v|Taft)| for all pairs of vertices u and v in G′.V .

Proof Sketch: The running time includes (1) the O(n) time
to sort edge, split interval, and initialize G′ due to n ver-
tices in G, and (2) the O(n log2 n) time to construct G′ due
to total log n intervals and O(n log n) time needed for each
interval. For the error bound, we use the same notation in
Algorithm 3. SinceH is a valid approximation ofG′, in lines 20–
25 of Algorithm 3, when we check whether |ΠH(w, x|Taft)| >
(1 + ε)|e(u, v|Taft)|, we are checking |ΠG′(u, v|Taft)| >
(1 + ε)|e(u, v|Taft)|. For any edge e(u, v|Taft) ∈ G′.E that
is not inserted to G′, we know |ΠG′(u, v|Taft)| ≤ (1 +
ε)|e(u, v|Taft)|. Since |e(u, v|Taft)| = |Π(u, v|Taft)|, we have
|ΠG′(u, v|Taft)| ≤ (1 + ε)|Π(u, v|Taft)|. �

D. Handling Subsequent Changes

So far, we have handled a single change. After one change,
we have the updated G and the sub-graph G′. There is no old G,
since we update G partially by using the new paths on Tbef to
replace the original paths onTaft. We keepG in the hard disk and
use G′ for shortest paths queries. To adapt UP-Oracle to handle
subsequent changes, we also updateMdist simultaneously when
using algorithm SSAD for path updating in the update exact
shortest path step of the update phase. Then, if subsequent
changes occur, we update G and Mdist, and generate G′ to
support querying.

E. Adaption to Multi-Layer Structure (UP-Oracle-MuLa)

We can adapt UP-Oracle to using a multi-layer structure,
thus obtaining UP-Oracle-MuLa. Long-range queries utilize the
approximate paths obtained from G′, and short-range queries
utilize the exact paths obtained from G with different LODs.
Suppose that there are l LODs. The basic idea is to form
temporary hierarchy graphs H ′1, H

′
2, . . . , H

′
l from G (similar to

H , but H is constructed based on G′, while H ′1, H
′
2, . . . , H

′
l

are constructed based on G) with different group radii that
correspond to different LODs. Then, we can regard the groups
of each temporary hierarchy graph as short-range query regions.
Specifically, to adapt UP-Oracle to become UP-Oracle-MuLa,
we add one more step called generate multi-layer structure at
the end of the update phase of UP-Oracle, and we add one more
check in the query phase of UP-Oracle.

1) Update phase: In the generate multi-layer structure step of
the update phase of UP-Oracle-MuLa, we construct a temporary
hierarchy graph H ′i from G using a fixed set of group centers
with radius i·Dmean

2l (where Dmean is the mean length of all
edges in G) at each LOD = i.

(i) When LOD = 1, i.e., the most zoomed-in level, we build
H ′1 using the insert intra-edge and first type inter-edge step of
algorithm HGSpan with group radius 1·Dmean

2l . For any pairs of
POIs that belong to the same group in H ′1, we store their exact
paths in a hash table M1. We then store M1 in a hash table
MLOD corresponding to LOD = 1.

(ii) When LOD = i > 1, we build H ′i using the same group
centers as of H ′1 with group radius i·Dmean

l . For any pair of

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 567

POIs that belong to the same group in H ′i, we store their exact
path in a hash table Mi, such that these paths do not exist in any
previous tables M1,M2, . . . ,Mi−1. We then store Mi in MLOD

corresponding to LOD = i. We repeat this until i = l. Finally,
MLOD and G′ are returned as the output.

Note that when LOD = i > 1, H ′i−1 and H ′i have the same
group centers, but the group radius of H ′i is larger than that of
H ′i−1, so if a pair of POIs belong to the same group in H ′i−1
(such that their corresponding exact path is stored in one of
M1,M2, . . . ,Mi−1), they also belong to the same group in H ′i,
and we do not need to store this exact path again in Mi. Thus,
the sum of exact paths stored in MLOD does not exceed the total
number of exact paths in G.

2) Query phase: In the query phase of UP-Oracle-MuLa,
given MLOD, G′, a LOD i, and a pair of POIs s and t in P , (i) if
the exact path between s and t does not exist inM1,M2, . . . ,Mi

of MLOD, we use Dijkstra’s algorithm to find the path between
them on G′ using the query phase of UP-Oracle; (ii) otherwise,
we simply return the exact paths.

F. Adaption to the A2A Query (UP-Oracle-A2A)

We can adapt UP-Oracle to be UP-Oracle-A2A for the
A2A query. We first place Steiner points on Tbef using the
method in study [43], and then use them as input (not the
POIs) to construct UP-Oracle-A2A (as of UP-Oracle). When
Tbef changes to Taft, the positions of Steiner points (based
on Taft) also change, we update UP-Oracle-A2A using these
Steiner points accordingly. For the query phase, given arbi-
trary point s (resp. t) on face fs (resp. ft), we let S(s)
(resp. S(t)) be a set of Steiner points on fs (resp. ft) and
its adjacent faces [43]. Then, we return ΠG′(s, t|Taft) in UP-
Oracle-A2A (which has the same definition in UP-Oracle) by
concatenating Π(s, p|Taft), ΠG′(p, q|Taft), and Π(q, t|Taft)
such that |ΠG′(s, t|Taft)| = minp∈S(s),q∈S(t)[|Π(s, p|Taft)|+
|ΠG′(p, q|Taft)|+ |Π(q, t|Taft)|], where |Π(s, p|Taft)| and
|Π(q, t|Taft)| can be calculated in O(1) time using algorithm
SSAD and |ΠG′(p, q|Taft)| is distance of the path between p
and q returned by UP-Oracle-A2A.

G. Theoretical Analysis

Theorem 1 analyzes UP-Oracle and its two adaptions.
Theorem 1: The oracle construction time, oracle update

time, output size, and shortest path query time of (1) UP-
Oracle and (2) UP-Oracle-MuLa are both O(nN2), O(N2 +
n log2 n), O(n), and O(log n), and (3) UP-Oracle-A2A
are O(N3

sin θ
√
ε
log 1

ε), O(N2 + N
sin θ

√
ε
log 1

ε log
2(N

sin θ
√
ε
log 1

ε),

O(N
sin θ

√
ε
log 1

ε), and O(log(N
sin θ

√
ε
log 1

ε)), respectively. (1)
UP-Oracle, (2) UP-Oracle-MuLa, and (3) UP-Oracle-A2A sat-
isfy |ΠG′(s, t|Taft)| ≤ (1 + ε)|Π(s, t|Taft)| for all pairs of (1 &
2) POIs s and t in P , and (3) points s and t on Taft, respectively.

Proof Sketch: We first discuss UP-Oracle. The oracle con-
struction time includes the O(nN2) time to calculate the pair-
wise P2P exact shortest paths time due to total n POIs and
the use of algorithm SSAD in O(N2) time for each POI. The
oracle update time includes (1) O(N) time to detect updated
terrain surface due to O(N) faces, (2) O(N2) time to update

TABLE II
REAL EARTHQUAKE TERRAIN DATASETS

exact shortest paths due to total O(1) updated POIs and the
use of algorithm SSAD in O(N2) time for each POI, (3) and
O(n log2 n) time to generate sub-graph time due to algorithm
HGSpan in Lemma 4. The output size is O(n) due to the output
graph size of algorithm HGSpan. The shortest path query time
is O(log n) due to the use of Dijkstra’s algorithm on G′ (in our
experiments, G′ has a constant number of edges and n vertices).
The error bound is due to algorithm HGSpan’s error.

We then discuss UP-Oracle-MuLa: The oracle construction
time is the same as of UP-Oracle. The oracle update time
includes the oracle update time in UP-Oracle, and also the
O(n log n) time to generate multi-layer structure due to to-
tal O(1) temporary hierarchy graphs and the O(n log n) time
needed for constructing each graph. The output size is O(n)
due to the output graph size of algorithm HGSpan and the
O(n) size of MLOD. The experimental shortest path query
time and error bound are better than those of UP-Oracle since
UP-Oracle-MuLa stores some exact paths in MLOD, but the
theoretical time, and error are the same as of UP-Oracle.

We then discuss UP-Oracle-A2A: Since there is a total of
N

sin θ
√
ε
log 1

ε Steiner points [43], we use this value to substituten
in UP-Oracle to obtain the new oracle construction time, oracle
update time, output size, and shortest path query time. The error
bound is due to the error bound of UP-Oracle and the proof in
study [43]. �

Since the adapted UP-Oracle for subsequent changes has
the same update phase as UP-Oracle, they share the same
complexity analysis.

V. EMPIRICAL STUDY

A. Experimental Setup

We conduct experiments on a Linux machine with a 2.20 GHz
CPU and 512 GB memory. All algorithms are implemented in
C++. Our experimental setup generally follows the setups in the
literature [6], [7], [8], [9], [10], [12].

1) Datasets: We conduct our experiments on 30 real before
and after earthquake terrain datasets listed in Table II with 0.5 M
faces.1 We obtain the earthquake terrain satellite maps with a
5 km × 5 km region from Google Earth with a resolution of
10 m [8], [9], [10], [27], and then we use Blender [44] to generate
the terrain model. To study the scalability, we follow an existing
multi-resolution terrain dataset generation procedure [8], [9],
[10] to obtain different resolutions of these datasets with 1 M,

1We upload the datasets at IEEE DataPort https://dx.doi.org/10.21227/7ras-
ng51

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.21227/7ras-ng51
https://dx.doi.org/10.21227/7ras-ng51

568 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

TABLE III
COMPARISON OF ALGORITHMS

1.5 M, 2 M, 2.5 M faces. This procedure appears in our technical
report [38]. We extract 500 POIs using OpenStreetMap [9], [10].

2) Algorithms: We include the best-known exact on-the-fly
algorithm WAV-Fly-Algo [24], [25], the best-known approximate
on-the-fly algorithm ESP-Fly-Algo [6], [12], the best-known
oracle WSPD-Oracle [9], [10] for the P2P query on terrain
surfaces, its adaption WSPD-UP-Oracle, the best-known oracle
EAR-Oracle [5] for the A2A query on terrain surfaces, its
adaption EAR-UP-Oracle, the adapted oracle from point clouds
to terrain surfaces RC-TIN-UP-Oracle [28] and its adaption
EAR-UP-Oracle as baselines. In Table III, we compare these
algorithms with UP-Oracle. The comparisons of all algorithms
(using big-O notation) can be found in our technical report [38].
Since the adapted UP-Oracle for subsequent changes has the
same update phase as UP-Oracle, they have the same complexity
and we omit the former oracle.

3) Query generation: We randomly choose pairs of POIs in P
for the P2P query, or arbitrary points on Taft for the A2A query,
and we report the average, minimum, and maximum results of
100 queries.

4) Parameters and performance metrics: We study the effect
of three parameters, namely (i) ε, (ii) n, and (iii) dataset size
DS (i.e., the number of faces in a terrain model). We consider
six performance metrics, namely (i) oracle construction time,
(ii) oracle update time, (iii) oracle size (i.e., the space usage of
G, Mdist, and H), (iv) output size (i.e., the space usage of G′),
(v) shortest path query time, and (vi) distance error (i.e., the
error of the distance returned by the algorithm compared with
the exact shortest distance).

B. Experimental Results

Our experiments show that WSPD-Oracle, WSPD-UP-
Oracle, EAR-Oracle, EAR-UP-Oracle, RC-TIN-Oracle, and
RC-TIN-UP-Oracle have excessive oracle update times with 500
POIs (more than 1 days), so we compare (1) all algorithms on
30 datasets with fewer POIs (50 by default), and (2) UP-Oracle,
WAV-Fly-Algo, and ESP-Fly-Algo on 30 datasets with more POIs
(500 by default). For the shortest path query time, the vertical
bar and the points denote the minimum, maximum, and average
results.

1) Ablation study for the P2P query: We consider 6 variations
of UP-Oracle, i.e., (i) we use a random POI selection sequence,
instead of using our optimal POI selection sequence, (ii) we

use the full shortest distance of a shortest path as the disk
radius, instead of using our minimum disk radius, (iii) we do not
store the POI-to-vertex distance information and re-calculate the
shortest path on Taft for determining whether the disk intersects
with ΔF , instead of using our efficient distance approximation,
(iv) we create two disks for each path when checking whether
we need to re-calculate the shortest path between a pair of POIs,
instead of using our efficient disk and updated face intersection
check, (v) we remove the generate sub-graph step, i.e., algorithm
HGSpan in the update phase and use a hash table to store the
pairwise P2P exact shortest paths on Taft in G, and (vi) we use
algorithm GSpan [36] or algorithm SGSpan [40] (degenerates to
algorithm GSpan when the input is a complete graph), instead
of using algorithm HGSpan in the generate sub-graph step of
the update phase. We use UP-Oracle-X where X ∈ {RanSelSeq,
FullRad, NoDistAppr, NoEffIntChe, NoEdgPru, NoEffEdgPru}
to denote these variations. The first four oracles correspond to the
four techniques in Section IV-B. The last two oracles correspond
to the idea covered in Section IV-C.

In Fig. 6 (resp. Fig. 7), we test the 5 values of n in {50, 100,
150, 200, 250} on TJ (resp. {500, 1000, 1500, 2000, 2500} on
SC) dataset while fixing ε at 0.1 and DS at 0.5 M (resp. ε to 0.25
and DS to 0.5 M) for the ablation study involving 6 variations
(resp. the last 3 variations, since the first 3 variations have ex-
cessive oracle update times with 500 POIs) and UP-Oracle. The
oracle update time for UP-Oracle-X, where X ∈ {RanSelSeq,
FullRad, NoDistAppr, NoEffIntChe, NoEffEdgPru} exceeds that
of UP-Oracle due to the four techniques from Section IV-B
and the use of algorithm HGSpan from Section IV-C. Although
the oracle update time and the shortest path query time of UP-
Oracle-NoEdgPru are slightly smaller than those of UP-Oracle,
the output size for UP-Oracle-NoEdgPru is 104 times due to the
use of algorithm HGSpan. Thus, UP-Oracle is the best oracle
among the variations.

2) Baseline comparisons for the P2P query: We proceed to
compare different baselines with UP-Oracle.

Effect of ε: In Fig. 8, we test the 6 values of ε in {0.05, 0.1,
0.25, 0.5, 0.75, 1} on GI dataset with fewer POIs while fixing
n at 50 and DS at 0.5 M. Although all algorithms have errors
close to 0%, UP-Oracle offers superior performance over other
baselines in terms of the oracle construction time, oracle update
time,output size, and shortest path query time due to the non-
updated terrain shortest path intact property, the stored pairwise
P2P exact shortest paths on Tbef , and the use of algorithm
HGSpan in UP-Oracle. Although the oracle size of UP-Oracle is
slightly larger than those of WSPD-Oracle, WSPD-UP-Oracle,
RC-TIN-Oracle, and RC-TIN-UP-Oracle, the oracle update time
of UP-Oracle is 88 times, 21 times, 70 times, and 17 times
smaller, respectively. Varying ε has (i) no impact on the oracle
construction time of UP-Oracle since it is independent of ε, (ii)
a small impact on the oracle update time of UP-Oracle, since
when n is small, the update exact shortest path step dominates
the generate sub-graph step, and the former step is independent
of ε, and (iii) a small impact on the oracle construction time and
oracle update time of other oracles since their early termination
criteria of using algorithm SSAD are loose (i.e., they need to use
algorithm SSAD to cover most of the POIs or highway nodes as
destinations even when ε is large).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 569

Fig. 6. Ablation study on TJ dataset with fewer POIs for the P2P query. Fig. 7. Ablation study on SC dataset with more POIs for the P2P query.

Fig. 8. Baseline comparisons (effect of ε on GI dataset with fewer POIs) for the P2P query.

Fig. 9. Baseline comparisons (effect of n on AU dataset with fewer POIs) for
the P2P query.

Fig. 10. Scalability test (effect of DS on LH dataset with more POIs) for the
P2P query.

Fig. 11. Multi-layer structure comparison on SC dataset.
Fig. 12. A2A query on SC dataset.

Effect ofn: In Fig. 9, we test the 5 values ofn in {50, 100, 150,
200, 250} on AU dataset while fixing ε at 0.1 (we also have the
results with 5 values ofn in {500, 1000, 1500, 2000, 2500}while
fixing ε at 0.25 in our technical report [38]) and DS at 0.5 M.
The oracle update time, output size, and shortest path query
time of UP-Oracle remain better than those of the baselines.
Specifically, the oracle update time of UP-Oracle is 21 times,
23 times, and 17 times smaller than those of WSPD-UP-Oracle,

EAR-UP-Oracle, and RC-TIN-UP-Oracle, respectively. Since
WSPD-UP-Oracle, EAR-UP-Oracle, and RC-TIN-UP-Oracle
have output graph G′ (which is similar to UP-Oracle), their
output size and shortest path query time are similar to those of
UP-Oracle.

3) Scalability test for the P2P query (effect of DS): In Fig. 10,
we test 5 values of DS in {0.5 M, 1 M, 1.5 M, 2 M, 2.5 M} on
LH dataset with more POIs while fixing ε at 0.25 and n at 500.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

570 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 2, FEBRUARY 2025

UP-Oracle can scale up to a large dataset with 2.5 M points.
Since UP-Oracle is an oracle, its shortest path query time is 105

times smaller than that of ESP-Fly-Algo.
4) Multi-layer structure: In Fig. 11, we compare UP-Oracle,

and UP-Oracle-MuLa by varying ε from {0.05, 0.1, 0.25, 0.5,
0.75, 1} and fixing n at 500 and DS at 0.5 M on SC dataset. The
oracle update time, output size, and shortest path query time of
UP-Oracle-MuLa are 1.1 times larger, 10 times larger, and 2
times smaller than those of UP-Oracle, since UP-Oracle-MuLa
uses MLOD to store some exact paths to accelerate shortest-
range queries.

5) A2A query: In Fig. 12, we test the A2A query by varying
ε from {0.05, 0.1, 0.25, 0.5, 0.75, 1} while fixing DS at 2k
on a multi-resolution of SC dataset. We adapt WSPD-Oracle,
WSPD-UP-Oracle, RC-TIN-Oracle, and RC-TIN-UP-Oracle
that answer the P2P query in a similar way to UP-Oracle-A2A,
and denote them as WSPD-Oracle-A2A, WSPD-UP-Oracle-
A2A, RC-TIN-Oracle-A2A, and RC-TIN-UP-Oracle-A2A (such
that they can answer the A2A query). The oracle update
time of UP-Oracle-A2A is 15 times better than the best-
known oracle EAR-Oracle on terrain surfaces for the A2A
query.

6) Case study: We conduct a case study on the 4.1 magnitude
earthquake (which caused an avalanche) in Valais as mentioned
in Section I-A. In this case study, on a terrain surface with 0.5 M
faces and 250 POIs, UP-Oracle just needs 400 s ≈ 6.7 min
to update the oracle, but the best-known oracle WSPD-Oracle
for the P2P query needs 35,100 s ≈ 9.8 hours. Answering 100
paths takes 0.1 s for UP-Oracle, 8,600 s ≈ 2.4 hours for the
best-known on-the-fly algorithm ESP-Fly-Algo, and 0.3 s for
WSPD-Oracle. Thus, only UP-Oracle is suitable for earthquake
rescuing to save lives.

7) Summary: In terms of the oracle update time, output size,
and shortest path query time, UP-Oracle is up to 88 times, 12
times, and 3 times (resp. 15 times, 50 times, and 100 times) better
than the best-known oracle WSPD-Oracle for the P2P query
(resp. EAR-Oracle for the A2A query) on terrain surfaces. (i)
For the P2P query on a terrain dataset with 0.5 M faces and 250
POIs, UP-Oracle’s oracle update time is 400 s≈ 6.7 min, while
WSPD-Oracle and RC-TIN-Oracle take 35,100 s ≈ 9.8 hours
and 28,100 s ≈ 7.5 hours. (ii) the shortest path query time for
computing 100 paths is 0.1 s for UP-Oracle, while the time is
8,600 s ≈ 2.4 hours for ESP-Fly-Algo, 0.3 s for WSPD-Oracle,
and 0.1 s for RC-TIN-Oracle. (iii) For the A2A query on a terrain
dataset with 20k faces, the oracle update time and shortest path
query time for computing 100 shortest paths of UP-Oracle-A2A
are 480 s ≈ 7 min and 0.05 s, while the values are 7,100 s ≈ 2
hours and 5 s for EAR-Oracle.

VI. CONCLUSION

We propose an efficient (1 + ε)-approximate shortest path
oracle on an updated terrain surface called UP-Oracle, which has
state-of-the-art performance in terms of the oracle update time,
output size, and shortest path query time compared with the
best-known oracle on terrain surfaces. In future work, it is of

interest to explore new pruning steps in UP-Oracle to further re-
duce the oracle update time (e.g., it may be possible to reduce the
likelihood of using algorithm SSAD when updating UP-Oracle
by reducing the disk radius in the non-updated terrain shortest
path intact property).

REFERENCES

[1] S. Xing, C. Shahabi, and B. Pan, “Continuous monitoring of nearest
neighbors on land surface,” Proc. VLDB Endowment, vol. 2, no. 1,
pp. 1114–1125, 2009.

[2] Metaverse, 2023. [Online]. Available: https://about.facebook.com/meta
[3] Google Earth, 2023. [Online]. Available: https://earth.google.com/web
[4] K. Deng, H. T. Shen, K. Xu, and X. Lin, “Surface kNN query processing,”

in Proc. IEEE Int. Conf. Data Eng., 2006, pp. 78–78.
[5] B. Huang, V. J. Wei, R. C.-W. Wong, and B. Tang, “EAR-Oracle: On

efficient indexing for distance queries between arbitrary points on terrain
surface,” Proc. ACM Manage. Data, vol. 1, no. 1, 2023, Art. no. 14.

[6] M. Kaul, R. C.-W. Wong, and C. S. Jensen, “New lower and upper bounds
for shortest distance queries on terrains,” Proc. VLDB Endowment, vol. 9,
no. 3, pp. 168–179, 2015.

[7] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen, “Finding shortest paths
on terrains by killing two birds with one stone,” Proc. VLDB Endowment,
vol. 7, no. 1, pp. 73–84, 2013.

[8] L. Liu and R. C.-W. Wong, “Finding shortest path on land surface,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 433–444.

[9] V. J. Wei, R. C.-W. Wong, C. Long, D. Mount, and H. Samet, “Proximity
queries on terrain surface,” ACM Trans. Database Syst., vol. 47, no. 4,
pp. 1–59, 2022.

[10] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount, “Distance oracle
on terrain surface,” in Proc. 2017 ACM Int. Conf. Manage. Data, 2017,
pp. 1211–1226.

[11] Y. Yan and R. C.-W. Wong, “Path Advisor: A multi-functional campus
map tool for shortest path,” Proc. VLDB Endowment, vol. 14, no. 12,
pp. 2683–2686, 2021.

[12] Y. Yan and R. C.-W. Wong, “Efficient shortest path queries on 3D weighted
terrain surfaces for moving objects,” in Proc. 25th IEEE Int. Conf. Mobile
Data Manage., 2024, pp. 11–20.

[13] Moderate mag. 4.1 earthquake - 6.3 km northeast of Sierre, Valais,
Switzerland, 2023. [Online]. Available: https://www.volcanodiscovery.
com/earthquakes/quake-info/1451397/mag4quake-Oct-24-2016-
Leukerbad-VS.html

[14] Turkey–Syria earthquakes 2023, 2023. [Online]. Available: https://www.
bbc.com/news/topics/cq0zxdd0y39t

[15] K. Pletcher and J. P. Rafferty, “Sichuan earthquake of 2008,” 2023. [On-
line]. Available: https://www.britannica.com/event/Sichuan-earthquake-
of-2008

[16] H. Li and Z. Huang, “82 die in Sichuan quake, rescuers race
against time to save lives,” 2022. [Online]. Available: https:
//www.chinadailyhk.com/article/289413#82-die-in-Sichuan-quake-
rescuers-race-against-time-to-save-lives

[17] J. E. Nichol, A. Shaker, and M.-S. Wong, “Application of high-resolution
stereo satellite images to detailed landslide hazard assessment,” Geomor-
phology, vol. 76, no. 1/2, pp. 68–75, 2006.

[18] A. Annis et al., “UAV-DEMs for small-scale flood hazard mapping,” Water,
vol. 12, no. 6, 2020, Art. no. 1717.

[19] T. Kawamura et al., “S1222a—The largest Marsquake detected
by InSight,” Geophysical Res. Lett., vol. 50, no. 5, 2023,
Art. no. e2022GL101543.

[20] NASA Mars exploration, 2023. [Online]. Available: https://mars.nasa.gov
[21] N. McCarthy, “Exploring the red planet is a costly undertaking,” 2021. [On-

line]. Available: https://www.statista.com/chart/24232/life-cycle-costs-
of-mars-missions/

[22] S. Pan and M. Li, “Construction of earthquake rescue model based on
hierarchical Voronoi diagram,” Math. Problems Eng., vol. 2020, pp. 1–13,
2020.

[23] S. Kapoor, “Efficient computation of geodesic shortest paths,” in Proc.
ACM Symp. Theory Comput., 1999, pp. 770–779.

[24] V. J. Wei, R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet, “On
efficient shortest path computation on terrain surface: A direction-oriented
approach,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 8, pp. 4129–4143,
Aug. 2024.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

https://about.facebook.com/meta
https://earth.google.com/web
https://www.volcanodiscovery.com/earthquakes/quake-info/1451397/mag4quake-Oct-24-2016-Leukerbad-VS.html
https://www.volcanodiscovery.com/earthquakes/quake-info/1451397/mag4quake-Oct-24-2016-Leukerbad-VS.html
https://www.volcanodiscovery.com/earthquakes/quake-info/1451397/mag4quake-Oct-24-2016-Leukerbad-VS.html
https://www.bbc.com/news/topics/cq0zxdd0y39t
https://www.bbc.com/news/topics/cq0zxdd0y39t
https://www.britannica.com/event/Sichuan-earthquake-of-2008
https://www.britannica.com/event/Sichuan-earthquake-of-2008
https://www.chinadailyhk.com/article/289413#82-die-in-Sichuan-quake-rescuers-race-against-time-to-save-lives
https://www.chinadailyhk.com/article/289413#82-die-in-Sichuan-quake-rescuers-race-against-time-to-save-lives
https://www.chinadailyhk.com/article/289413#82-die-in-Sichuan-quake-rescuers-race-against-time-to-save-lives
https://mars.nasa.gov
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/

YAN et al.: EFFICIENTLY UPDATABLE PATH ORACLE FOR TERRAIN SURFACES 571

[25] J. Chen and Y. Han, “Shortest paths on a polyhedron,” in Proc. Symp.
Comput. Geometry, 1990, pp. 360–369.

[26] S.-Q. Xin and G.-J. Wang, “Improving Chen and Han’s algorithm on the
discrete geodesic problem,” ACM Trans. Graph., vol. 28, no. 4, pp. 1–8,
2009.

[27] C. Shahabi, L.-A. Tang, and S. Xing, “Indexing land surface for efficient
kNN query,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 1020–1031, 2008.

[28] Y. Yan and R. C.-W. Wong, “Proximity queries on point clouds using
rapid construction path oracle,” Proc. ACM Manage. Data, vol. 2, no. 1,
pp. 1–26, 2024.

[29] Y. Hong and J. Liang, “Excavators used to dig out rescue path
on cliff in earthquake-hit Luding of SW China’s Sichuan,” People’s
Daily Misc, 2022. [Online]. Available: http://en.people.cn/n3/2022/0909/
c90000-10145381.html

[30] Mars 2020 mission perseverance rover brains, 2023. [Online]. Available:
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/

[31] NASA’s self-driving perseverance mars rover ‘takes the wheel’, 2021. [On-
line]. Available: https://www.nasa.gov/solar-system/nasas-self-driving-
perseverance-mars-rover-takes-the-wheel/

[32] Mars 2020 mission perseverance rover communications, 2023. [On-
line]. Available: https://www.statista.com/chart/24232/life-cycle-costs-
of-mars-missions/

[33] J. A. Crisp, M. Adler, J. R. Matijevic, S. W. Squyres, R. E. Arvidson,
and D. M. Kass, “Mars exploration rover mission,” J. Geophysical Res.
Planets, vol. 108, no. E12, pp. 1–17, 2003.

[34] D. Peleg and J. D. Ullman, “An optimal synchronizer for the hypercube,”
in Proc. ACM Symp. Princ. Distrib. Comput., 1987, pp. 77–85.

[35] H. Shpungin and M. Segal, “Near-optimal multicriteria spanner construc-
tions in wireless ad hoc networks,” IEEE/ACM Trans. Netw., vol. 18, no. 6,
pp. 1963–1976, Dec. 2010.

[36] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, “On sparse
spanners of weighted graphs,” Discrete Comput. Geometry, vol. 9, no. 1,
pp. 81–100, 1993.

[37] B. Padlewska, “Connected spaces,” Formalized Math., vol. 1, no. 1,
pp. 239–244, 1990.

[38] Y. Yan, R. C.-W. Wong, and C. S. Jensen, “An efficiently updatable
path oracle for terrain surfaces (technical report),” 2023. [Online]. Avail-
able: https://github.com/yanyinzhao/UpdatedStructureTerrainCode/blob/
master/TechnicalReport.pdf

[39] M. Fan, H. Qiao, and B. Zhang, “Intrinsic dimension estimation of man-
ifolds by incising balls,” Pattern Recognit., vol. 42, no. 5, pp. 780–787,
2009.

[40] G. Das and G. Narasimhan, “A fast algorithm for constructing sparse
Euclidean spanners,” in Proc. Symp. Comput. Geometry, 1994, pp. 132–
139.

[41] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2022.

[43] H. N. Djidjev and C. Sommer, “Approximate distance queries for weighted
polyhedral surfaces,” in Proc. Eur. Symp. Algorithms, 2011, pp. 579–590.

[44] Blender, 2023. [Online]. Available: https://www.blender.org
[45] Mar 11, 2011: Tohoku earthquake and Tsunami, 2023. [Online]. Available:

https://education.nationalgeographic.org/resource/tohoku-earthquake-
and-tsunami/

[46] Gujarat earthquake, 2001, 2023. [Online]. Available: https://www.
actionaidindia.org/emergency/gujarat-earthquake-2001/

[47] 2018 Anchorage earthquake, 2023. [Online]. Available: https://www.usgs.
gov/news/featured-story/2018-anchorage-earthquake

[48] R. Pallardy, “2010 Haiti earthquake,” 2023. [Online]. Available: https:
//www.britannica.com/event/2010-Haiti-earthquake

Yinzhao Yan received the BSc degree in computer
science from Hong Kong Baptist University, in 2020.
He is currently working toward the PhD degree in
computer science and engineering with the Hong
Kong University of Science and Technology super-
vised by Prof. Raymond Chi-Wing Wong. He pub-
lished several papers as the first author in SIGMOD,
VLDB, and MDM. He received MDM 2024 Best
Paper Award. His research interest include spatial
databases.

Raymond Chi-Wing Wong received the BSc, MPhil,
and PhD degrees in computer science and engineering
from the Chinese University of Hong Kong, in 2002,
2004, and 2008, respectively. He is a professor in
computer science and engineering with the Hong
Kong University of Science and Technology. He is
currently the associate head with the Department of
Computer Science and Engineering and the director
of Undergraduate Research Opportunities Program.
He published more than 160 papers (e.g., SIGMOD,
VLDB, ICDE, the ACM Transactions on Database

Systems, IEEE Transactions on Knowledge and Data Engineering, and VLDB
Journal). His research interests include database and data mining.

Christian S. Jensen (Fellow, IEEE) is a professor in
computer science with Aalborg University, Denmark.
He is an ACM fellow and a member of the Academia
Europaea, the Royal Danish Academy of Sciences
and Letters, and the Danish Academy of Technical
Sciences. He has received several national and in-
ternational awards for his research, most recently
the 2019 IEEE TCDE Impact Award and the 2022
ACM SIGMOD Contributions Award. His research
concerns data analytics and management with focus
on temporal and spatio-temporal data.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2025 at 13:05:45 UTC from IEEE Xplore. Restrictions apply.

http://en.people.cn/n3/2022/0909/c90000-10145381.html
http://en.people.cn/n3/2022/0909/c90000-10145381.html
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://www.nasa.gov/solar-system/nasas-self-driving-perseverance-mars-rover-takes-the-wheel/
https://www.nasa.gov/solar-system/nasas-self-driving-perseverance-mars-rover-takes-the-wheel/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://github.com/yanyinzhao/UpdatedStructureTerrainCode/blob/master/TechnicalReport.pdf
https://github.com/yanyinzhao/UpdatedStructureTerrainCode/blob/master/TechnicalReport.pdf
https://www.blender.org
https://education.nationalgeographic.org/resource/tohoku-earthquake-and-tsunami/
https://education.nationalgeographic.org/resource/tohoku-earthquake-and-tsunami/
https://www.actionaidindia.org/emergency/gujarat-earthquake-2001/
https://www.actionaidindia.org/emergency/gujarat-earthquake-2001/
https://www.usgs.gov/news/featured-story/2018-anchorage-earthquake
https://www.usgs.gov/news/featured-story/2018-anchorage-earthquake
https://www.britannica.com/event/2010-Haiti-earthquake
https://www.britannica.com/event/2010-Haiti-earthquake

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

