An Efficiently Updatable Path Oracle for Terrain
Surfaces

Yinzhao Yan, Raymond Chi-Wing Wong, and Christian S. Jensen

Abstract—The booming of computer graphics technology facilitates the growing use of terrain data. Notably, shortest path querying on
a terrain surface is central in a range of applications and has received substantial attention from the database community. Despite this,
computing the shortest paths on-the-fly on a terrain surface remains very expensive, and all existing oracle-based algorithms are only
efficient when the terrain surface is fixed. They rely on large data structures that must be re-constructed from scratch when updates to
the terrain surface occur, which is very time-consuming. To advance the state-of-the-art, we propose an efficiently updatable

(1 + ¢)-approximate shortest path oracle for a set of Points-Of-Interests (POls) on an updated terrain surface, and it can be easily
adapted to the case if POls are not given as input. Our experiments show that when POls are given (resp. not given), our oracle is up
to 88 times, 12 times, and 3 times (resp. 15 times, 50 times, and 100 times) better than the best-known oracle on terrain surfaces in

terms of the oracle update time, output size, and shortest path query.

Index Terms—Spatial databases, query processing, shortest path query, terrain

1 INTRODUCTION

ALCULATING shortest paths on terrain surfaces is a
C topic of widespread interest [1]. In industry, Meta-
verse [2] and Google Earth [3] use shortest paths on terrain
surfaces (e.g., in virtual reality or on Earth) to assist users to
reach destinations more quickly. In academia, shortest path
querying on terrain surfaces also attracts considerable atten-
tion [4], [5], [6], [7], [8], [9], [10], [11], [12]. A terrain surface is
represented by a set of faces, each of which is captured by a
triangle. A face consists of three line segments, called edges,
connected with each other at three vertices. Figures 1 (a) and
(b) show a real map of Valais, Switzerland [13] with an area
of 20km x 20km, and Figures 1 (c) and (d) show Valais
terrain surface (consisting of vertices, edges and faces).

Ty Original terrainj
= V: Vertices

e

? o Updated terrain
£

Z |Updatedfaces b AF: Updatedfaces

Original path .
(®) (d

Fig. 1. The real map (a) before and (b) after updates, the terrain surface
(c) before and (d) after updates for avalanche in Valais, Switzerland

1.1 Motivation

1) Updated terrain surface: The computation of shortest
paths on updated terrain surfaces occurs in many scenarios.

e Y. Yan and R.C. Wong are with The Hong Kong University of Science
and Technology.
E-mail: yyanas@cse.ust.hk; raywong@cse.ust.hk

o C.S. Jensen is with Aalborg University.
E-mail: csj@cs.aau.dk

o Code: https://github.com/yanyinzhao/UpdatedStructureTerrainCode

(i) Earthquake: We aim to find the shortest rescue paths
for life-saving after an earthquake. The death toll of the
7.8 magnitude earthquake on Feb 6, 2023 in Turkey and
Syria exceeded 40,000 [14], and more than 69,000 died in
the 7.9 magnitude earthquake on May 12, 2008 in Sichuan,
China [15]. A rescue team can save 3 lives every 15 min-
utes [16], and we expect that the team can arrive at the sites
of the quake as early as possible. In practice, (a) satellites or
(b) drones can be used to collect the terrain surface after an
earthquake, which takes (a) 10s and USD $48.72 [17], and
(b) 144s ~ 2.4 min and USD $100 [18] for a 1km? region,
respectively, which are time and cost efficient.

(ii) Avalanche: Earthquakes may cause avalanches. The
4.1 magnitude earthquake on Oct 24, 2016 in Valais [13]
caused an avalanche: Figures 1 (a) and (b) (resp. Figures 1 (c)
and (d)) show the original and new shortest paths between
a (a village) and b (a hospital) on a real map (resp. a terrain
surface) before and after terrain surface updates. We need
to efficiently find the shortest rescue paths.

(iii) Marsquake: As observed by NASA’s InSight lander
on May 4, 2022 [19], Mars also experienced a marsquake.
In NASA’s Mars exploration project [20] (with cost USD 2.5
billion [21]), Mars rovers should find the shortest escape
paths quickly and autonomously in regions affected by
marsquakes to avoid damage.

2) P2P and A2A query: (i) Given a set of Points-Of-Interest
(POI) on a terrain surface, we can calculate the shortest path
between pairs of POIs, i.e., perform the POI-to-POI (P2P)
query. For earthquakes and avalanches, POIs can be villages
waiting for rescuing [22], hospitals, and expressway exits.
For the Marsquake, POIs can be working stations of Mars
rover. (ii) If no POIs are given, we calculate the shortest
path between pairs of arbitrary points (including the vertices
of the terrain surface), i.e., perform the arbitrary points-to-
arbitrary points (A2A) query. The A2A query generalizes the
P2P query because it allows any points on a terrain surface.

3) Oracle: Pre-computing shortest paths on a terrain

https://github.com/yanyinzhao/UpdatedStructureTerrainCode

surface using an index, known as an oracle, can efficiently
reduce the shortest path query time, especially when we
need to calculate more than one shortest path with different
sources and destinations (where the time taken to pre-
compute the oracle is called the oracle construction time, the
space usage of the output oracle is called the output size, and
the time taken to return the result is called the shortest path
query time). We also aim to update the oracle quickly when
the terrain surface changes (where the time taken to update
the oracle is called the oracle update time). In earthquakes,
avalanches or Marsquakes, if we pre-compute shortest paths
(among villages, hospitals or Mars rover working stations)
using an oracle on terrain surfaces prone to these disasters,
and efficiently update the oracle after the disaster, then we
can use it to efficiently return shortest paths.

1.2 Challenges

1) Inefficiency of on-the-fly algorithms: Consider a terrain
surface T' with N vertices. All existing exact on-the-fly short-
est path algorithms [23], [24], [25], [26] on a terrain surface
are slow when many shortest path queries are involved.
As recognized by existing studies [1], [5], [10], [27], the
best-known exact algorithm [24], [25] runs in O(N?) time.
Although approximate algorithms [6], [7], [8], [12] can reduce
the running time, they are not efficient enough. The best-
known approximate algorithm [6], [12] on terrain surfaces
runs in O((N + N')log(N + N’)) time, where N’ is the
number of Steiner points used for the bound guarantee. Our
experiments show that the best-known exact algorithm [24],
[25] (resp. approximate algorithm [6], [12]) needs 11,600s =~
3.2 hours (resp. 8,600s ~ 2.4 hours) to calculate 100 shortest
paths on a terrain surface with 0.5M faces.

2) Non-existence of oracles on updated terrain surfaces:
Although existing studies [5], [9], [10] can construct oracles
on static terrain surfaces, and can then answer P2P or
A2A queries efficiently, no study can accommodate updated
terrain surfaces, where the oracle needs to be updated
efficiently. One study [28] constructs an oracle on static point
clouds that can be adapted to static terrain surfaces for
the P2P query by using the on-the-fly algorithm on terrain
surfaces [23], [24], [25], [26]. However, this oracle still can-
not accommodate updated terrain surfaces. When a terrain
surface is updated, straightforward adaptations of the best-
known oracle [9], [10] for the P2P query, the best-known
oracle [5] for the A2A query, and the oracle [28] for points
clouds adapted to terrain surfaces for the P2P query must
re-construct the oracles. However, their oracle construction
times are O(nN? 4 cin), O(caN?), and O(c3nN? + nlogn),
respectively, where n is the number of POls, ¢;, ¢z, and c3 are
constants depending on T (c¢; € [35,80], c2 € [75,154], and
¢3 € [3,10] on average). In our experiments, oracle [9], [10]
(resp. adapted oracle [28]) needs 35,100s ~ 9.8 hours (resp.
28,100s ~ 7.5 hours) for oracle construction on a terrain
surface with 0.5M faces and 250 POlIs, and oracle [5] needs
35,500s ~ 9.9 hours on a terrain surface with 100k faces.

1.3 Path Oracle on Updated Terrain Surfaces

We propose an efficiently updatable (1 + €)-approximate
shortest path oracle, called Updatable Path Oracle (UP-
Oracle), for solving the updated terrain surfaces problem (given

2

two terrain surfaces before and after updates, i.e., Tj, and
Ty, we efficiently answer P2P queries on Tz by using
shortest paths on Tj,), where ¢ > 0 is the error parameter. We
construct UP-Oracle, efficiently update it, and find the short-
est path using it in Figures 2 (a) to (c), Figures 2 (d) to (f),
and Figure 2 (g). UP-Oracle has state-of-the-art performance
in terms of the oracle update time, output size, and shortest
path query time (compared with the best-known oracle [9],
[10] for the P2P query on terrain surfaces) due to the concise
capture of pairwise P2P shortest paths. UP-Oracle can be
easily adapted to answering A2A queries on T4 (denoted by
UP-Oracle-A2A) and also has good performance (compared
with the best-known oracle [5] for the A2A query on terrain
surfaces).

1) Achieving a short oracle update time: The ideas for
achieving a short oracle update time of UP-Oracle follow
from (i) a novel property, i.e., the non-updated terrain shortest
path intact property, and (ii) the useful information on Ty,
i.e., the stored pairwise P2P exact shortest paths on Ty, when
UP-Oracle is constructed.

(i) Non-updated terrain shortest path intact property: In
Figure 3, this property implies that given the light blue path
between u and v on T, (with distance d), if the distances
from both v and v to the updated faces are large enough
(i.e., both larger than £), then the path between u and v on
Ty remains the same and does not need to be updated.

(ii) Stored pairwise P2P exact shortest paths on Tj,s: The
exact shortest distances are no larger than the approximate
shortest distances. So given an exact (resp. approximate)
shortest path with two endpoints u and v on Tj,y, in the non-
updated terrain shortest path intact property in Figure 3,
it is likely (resp. unlikely) that the distances from both u
and v to the updated faces are both larger than the exact
(resp. approximate) length of this path, and it reduces (resp.
increases) the likelihood of updating this path on Tyg.

2) Efficiently achieving a small output size: Although
we have the pairwise P2P exact shortest paths on Ty, we
aim to return fewer paths to reduce the output size:

(i) Earthquake and avalanche: For the earthquake region
with ruins, rescue teams need to transport injured citizens
from damaged villages to unaffected hospitals. Since it is
time-consuming to build rescue paths in the earthquake
region [29], fewer paths imply that the total time to build
rescue paths is smaller, enabling the rescue teams to focus
on saving lives. For other nearby regions, trucks need to
transfer medical materials to hospitals. Rescue teams need
to keep roads clear to avoid road blockages caused by panic.
Fewer paths imply that the number of rescue teams needed
for road maintenance is smaller, enabling an increased focus
on saving lives. That is, given a complete graph (with the
POIs as vertices and with the exact shortest paths between
POlIs on i as edges), we hope that UP-Oracle can efficiently
generate a sub-graph of it with a small output size. But,
we can store the complete graph in the hard disk for any
subsequent changes.

(if) Marsquake: For Mars rovers, we only know the
damaged region after a quake, so the coverage of T}, stored
in Mars rovers is large (e.g., the entire Mars surface), and
similar to Tis. NASA’s Mars 2020 rover has 256MB memory
and 2GB hard disk space [30], and it autonomously calcu-
lates paths [31]. Since the round trip signal delay between

Construction phase AF: Updated faces

Key
(a, v)| 4
> (@, v)| 3

NN

)
Updated T,

Update phase

Query phase

Updated faces

(a)

(d)

Fig. 2. Framework overview

Earth and Mars is 40 minutes [32], it is time-consuming to
send terrain information captured by a rover after a quake to
Earth, ask human experts to find shortest escape paths, and
then send the paths to Mars. Before a quake, a rover stores
the pairwise P2P exact shortest paths on Ty, in the hard
disk and transfers this to memory as needed. After a quake,
it needs to update the pairwise P2P exact shortest paths
on Ty and store this in a complete graph. It then needs to
efficiently generate a sub-graph for rescue path calculation.
Because our experiments show that for a terrain surface with
250k faces and 250 POlIs, the pairwise P2P exact shortest
paths on Ty, consume 127MB, the complete graph occupies
126MB, and the sub-graph output from UP-Oracle occupies
10MB. When a rover starts to escape, it needs 210MB extra
memory for different sensors to work [33]. Since 126MB +
210MB = 336MB > 256MB and 10MB + 210MB = 220MB
< 256MB, we can only fit the sub-graph in the memory of
a rover for escaping. We have sufficient memory for path
updating and sub-graph generation since 127MB + 126MB
= 253MB < 256MB and 126MB + 10MB = 136MB < 256MB,
and we can store the complete graph in the hard disk for
subsequent changes since 126MB < 2GB.

Generating a sub-graph from a complete graph is also
used in distributed systems for faster network synchro-
nization [34] and in wireless networks for faster signal
transmission [35]. Specifically, given a complete graph and ¢,
the best-known (1 + ¢)-sub-graph generation algorithm [36]
runs in O(n3logn) time, which is inefficient. A (1 + ¢)-sub-
graph has the property that the distance between any pair
of its vertices is at most (1 + ¢) times the exact distance. We
propose a faster algorithm called Hierarchy Greedy Spanner
(HGSpan). Given a complete graph and ¢, we use a simpler
structure to approximate the internal graph for faster pro-
cessing and generate a (1 + ¢)-sub-graph. Our experiments
show that when n = 500, our algorithm takes 24s, while the
best-known algorithm [36] takes 101s.

We can also maintain a multi-layer structure. Long-
range queries can utilize the approximate results calculated
using the sub-graph, as the complete graph is excessively
large. Short-range queries can utilize exact results with
higher accuracy. In the earthquake and avalanche (resp.
Marsquake) example, dense population villages (resp. Mars
rover frequent work regions) can be regarded as short-range
query regions, we use the exact results for faster rescuing
(resp. escaping). Depending on different areas of villages or
work regions, we can select different Level-Of-Details (LODs)
of short-range query regions for customized querying.

1.4 Contributions and Organization

Our major contributions are as follows.

Fig. 3. An unaf-
fected path

(1) We propose the first oracle, called UP-Oracle, for solv-
ing the updated terrain surfaces problem. It achieves a short
oracle update time by satisfying the novel non-updated ter-
rain shortest path intact property, and by utilizing the useful
information on Tjs (the pairwise P2P exact shortest paths on
The)- We also propose four additional techniques to further
reduce the oracle update time. Designing an oracle on an
updated terrain surface with a small oracle update time is
challenging: there are no existing solutions, and only limited
information about Ty, can be re-used. We also develop an
efficient algorithm called HGSpan to reduce the output size,
and we adapt UP-Oracle for handling subsequent changes,
adapt UP-Oracle to UP-Oracle-A2A for A2A queries, and
adapt UP-Oracle to a multi-layer structure called UP-Oracle
Multi Layer (UP-Oracle-MuLa).

(2) We provide a thorough theoretical analysis of the
oracle construction time, oracle update time, output size,
shortest path query time, and error bound for these oracles.

(3) UP-Oracle performs much better than the best-known
oracle [9], [10] for the P2P query and UP-Oracle-A2A per-
forms much better than the best-known oracle [5] for the
A2A query on terrain surfaces in terms of the oracle update
time, output size, and shortest path query time. (i) For the
P2P query on a terrain surface with 0.5M faces and 250 POls,
the oracle update time and output size of UP-Oracle are 400s
~ 6.7 min and 22MB, while the values are 35,100s ~ 9.8
hours, and 250MB for the best-known oracle [9], [10], respec-
tively, and (ii) the shortest path query time for computing
100 shortest paths with different sources and destinations is
0.1s for UP-Oracle, while the time is 8,600s ~ 2.4 hours for
the best-known approximate on-the-fly algorithm [6], [12]
and 0.3s for the best-known oracle [9], [10]. (iii) For the
A2A query on a terrain surface with 20k faces, the oracle
update time, output size, and shortest path query time for
computing 100 shortest paths of UP-Oracle-A2A are 480s ~
7 min, 3MB and 0.05s, while the values are 7,100s ~ 2 hours,
150MB and 5s for the best-known oracle [5], respectively.
The adapted UP-Oracle for subsequent changes and UP-
Oracle-MuLa also perform well.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the preliminary. Section 3 discusses related
work. Section 4 presents UP-Oracle. Section 5 covers the
empirical study, and Section 6 concludes the paper.

2 PRELIMINARY
2.1 Notation and Definitions

1) Terrain surfaces and POlIs: Consider a terrain surface Ty
represented as a Triangulated Irregqular Network (TIN) [8], [9],
[10], [27]. Let V, E, and F be the set of vertices, edges,

and faces of Ty, respectively. Let Ly, be the length of the
longest edge in E. Let N be the number of vertices. Each
vertex v € V has three coordinates, ., y,, and z,. If the
positions of vertices in V' are updated, we obtain a new
terrain surface, Tj4. Figures 1 (c) and (d), and Figures 2 (a)
and (d) show examples of T, and Ty, respectively. There is
no need to consider the case when N changes because Ty
and Ti; have the same 2D grid with @ x §j = N vertices [8],
[9], [10]. Specifically, for Ty, in Figure 2 (a), given a fixed
region, existing methods [1], [5], [10], [27] sample a fixed set
of points on T, on the 2D grid in the x-y plane and use the
elevations of these points as the z-coordinates, yielding the
final set of vertices on Tys. For Ty in Figure 2 (d), since we
focus on the same region (although the shape of the region
on Tz may change), the set of points is fixed, and N is also
fixed. In the P2P query, let P be a set of POls on Ty and n
be the number of POIs. There is no need to consider when n
changes, or when n > N. The set of red points in Figure 2 (a)
is P. When a POl is added, we create an oracle that answers
the A2A query, which implies we consider all possible POIs
to be added. When a POI is removed, we continue to use the
original oracle. When n > N, we still create an oracle that
answers the A2A query.

2) Path: Given s and t in P, and a terrain surface T, let
I1(s,t|T) be the exact shortest path between s and ¢ on T,
and | - | be the distance of a path (e.g., |II(s, t|T")| is the exact
distance of II(s, t|T") on T).

3) Updated and non-updated faces: Given Ty, Ty, and
P, a set of updated faces, denoted by AF, is defined to be a
set of faces AF = {f1, fa,..., fiar|}, where f; is a face in F’
with at least one of its three vertices’ coordinates differing
between T, and Ty4, and |AF| is the number of faces in AF.
It is easy to obtain AF by comparing T}, and Tj4. In Figure 1
(d) (resp. Figure 2 (d)), the yellow (resp. gray) region is AF
based on T}, and Ty There is no need to consider the case
with two or more disjoint non-empty sets of updated faces. If
this happens, we can create a larger set of faces that contains
these disjoint sets. Thus, in Figures 1 (d) and Figure 2 (d),
the set of updated faces that we consider is connected [37].
We say that a point (either a vertex or a POI) is in AF if it
is on a face in AF, and we say that a path passes AF if any
segment of this path is on a face AF. In Figure 2 (e), a is in
AF, and the purple path between a and b passes AF.

4) Disk: Given a point p on Ty and a constant r > 0,
let D(p,r) be the disk centered at p with radius r, which
consists of all points on Tj,s whose exact shortest distance
to p is no more than r. Given a face f;, if a point ¢ exists
on f; such that the shortest distance between p and ¢ is
no more than r, then disk D(p,r) intersects with face f;.
Figure 3 shows two disks centered at v and v, both with
radius 497 that do not intersect with any updated
faces. Table 1 shows a summary of frequently used notation.

2.2 Updated Terrain Surfaces Problem

Given Tjy, Ty, and P, the problem is to efficiently answer
P2P queries on Tz (using shortest paths on Tjy) with
[T (s, t|Top)| < (1+€)|II(s, t|Tp)| for any s and ¢ in P, where
II'(s, t|Tys) is the shortest path result between s and ¢ on Tyg.

TABLE 1
Summary of frequently used notation

Notation Meaning

Toef/ Toft The terrain surface before / after updates
V/E/F The set of vertices / edges / faces of terrain surface
s The length of the longest edge in E of Ty,

N The number of vertices of T'

P The set of POI

n The number of vertices of P

TI(s,t|T") The exact shortest path between s and t on T'
[TI(s,¢|T)| The distance of II(s, t|T)

AF The updated faces of Tj,r and Tip

D(p,r) A disk centered at p with radius r

€ The error parameter

2.3 Non-updated Terrain Shortest Path Intact Property

Property 1 describes an important property for solving the
updated terrain surface surfaces problem.

Property 1 (Non-updated Terrain Shortest Path Intact
Property). In Figure 3, given Ty, Ton, and T(u, v|Tyy), if two
disks D(u,w) and D(U,WWQM) do not intersect
with AF, then I(u, v|Tyg) is the same as T1(u, v|Tyy).

Proof Sketch. We show by contradiction that the two paths
cannot be different. The detailed proofs in the remaining of
this paper appear in our technical report [38]. O

3 RELATED WORK
3.1 On-the-fly Algorithms on Terrain Surfaces

Two types of algorithms can compute the shortest path on a
terrain surface on-the-fly.

1) Exact algorithms: The running times of the four exact
algorithms [23], [24], [25], [26] are O(Nlog® N), O(N?),
O(N?),and O(N?log N), respectively. They are Single-Source
All-Destination (SSAD) algorithms [5], [10], [23], [24], [25],
[26], i.e., given a source, they can calculate the shortest
path from it to all other vertices simultaneously. According to
existing studies [1], [5], [10], [27], algorithm [23] that runs in
O(N log® N) time is hard to implement (no implementation
exists). So, the implementable algorithm WAVefront on-the-
Fly Algorithm (WAV-Fly-Algo) [24], [25] that runs in O(N?)
time is recognized as the practical algorithm of choice. It
uses a continuous version of Dijkstra’s algorithm and needs
to consider continuous points on the edges of the terrain
surface by unfolding the 3D terrain surface into a 2D plane
(which is not needed in the plain Dijkstra’s algorithm)
during wavefront propagation, so its running time cannot
be reduced to O(N log N) in the plain Dijkstra’s algorithm.
WAV-Fly-Algo comes in two variants with the same time
complexity: an initial version [25] and an extended ver-
sion [24] with better empirical running time.

2) Approximate algorithins: Approximate algorithms [6],
[7], [8], [12] aim to reduce the running time. The best-
known approximate algorithm Efficient Steiner Point on-the-
Fly Algorithm (ESP-Fly-Algo) [6], [12] on terrain surfaces
places Steiner points on edges in E, and then constructs
a graph using these points and V' to calculate a (1 + ¢)-
approximate shortest path on a terrain surface using Dijk-
stra’s algorithm. It runs in O(;—tf— log(—tull_—))

1—cos 8 €lyminv/1—cos 0
time, where U4y (resp. lyin) is the fength of the longest (resp.

shortest) edge of T, and 6 is the minimum inner angle
of any face in F. Algorithm [6] runs on an unweighted
terrain surface and algorithm [12] runs on a weighted terrain
surface where each terrain surface face is assigned a weight.
They are the same if we set the weight of each face in
algorithm [12] to be 1, so we regard them as one algorithm.

Drawback: All these algorithms are inefficient for com-
puting multiple shortest path queries. Our experiments
show that WAV-Fly-Algo and ESP-Fly-Algo need 11,600s ~
3.2 hours, and 8,600s = 2.4 hours to compute 100 paths with
different sources and destinations on a terrain surface with
0.5M faces, respectively.

3.2 Oracle-based Algorithms on Terrain Surfaces

The Well-Separated Pair Decomposition Oracle (WSPD-
Oracle) [9], [10] (resp. the Efficiently ARbitrary pints-to-
arbitrary points Oracle (EAR-Oracle) [5]) is regarded as the
best-known oracle for answering approximate P2P (resp.
A2A) queries on terrain surfaces. Further, an existing ora-
cle [28], originally designed for answering approximate P2P
queries on point clouds, can be adapted to the Rapid-
Constuction TIN Oracle (RC-TIN-Oracle) for answering ap-
proximate P2P queries on terrain surfaces [28]. Yet, no ex-
isting oracle can accommodate updated terrain surfaces,
where the oracle needs to be updated efficiently. A straight-
forward adaption is to re-construct them from scratch when
the terrain surface is updated. A smart adaption is to lever-
age Property 1 in UP-Oracle, such that we only re-calculate
the paths on T; that require updating to reduce the oracle
update time. We denote the adapted oracles as WSPD-UP-
Oracle, EAR-UP-Oracle, and RC-TIN-UP-Oracle.

1) WSPD-Oracle and WSPD-UP-Oracle: These use a
compressed partition tree, algorithm SSAD, and well-separated
node pair sets to index the (1 + €)-approximate pairwise P2P
shortest paths. (i) WSPD-Oracle’s oracle construction time,
output size, and shortest path query time is O(”szvf + b+
nhlogn), O(%:), and O(h?), respectively, where h is the
height of the compressed partition tree and 8 € [1.5,2] is
the largest capacity dimension [39]. (ii) WSPD-UP-Oracle’s
oracle update time is O(p1 N 24n log2 n), where p; is a data-
dependent variable, and y; € [5,20] in our experiments.

2) EAR-Oracle and EAR-UP-Oracle These use the
same idea as WSPD-Oracle and WSPD-UP-Oracle, i.e., well-
separated pair decomposition. Their differences are that
they adapt WSPD-Oracle and WSPD-UP-Oracle from the
P2P query to the A2A query by using Steiner points on
the terrain faces and using highway nodes (i.e., not POls in
WSPD-Oracle and WSPD-UP-Oracle) for well-separated pair
decomposition. (i) EAR-Oracle’s oracle construction time,
output size, and shortest path query time is O(A¢(mN)? +
X+ Mb 4+ NhlogN), O(22N + X1 and O(Alog(AE)),
respectively, where X is the number of highway nodes in
one square, ¢ is the square root of the number of boxes,
and m is the number of Steiner points per face. (ii) EAR-
UP-Oracle’s oracle update time is O(pe N 24n log2 n), where
u2 is a data-dependent variable, and po € [12,45] in our
experiments.

3) RC-TIN-Oracle and RC-TIN-UP-Oracle These use
path and endpoint map tables to index the (1+4-¢)-approximate
pairwise P2P shortest paths. (i) RC-TIN-Oracle’s oracle con-
struction time, output size, and shortest path query time is

5

O(M +nlogn), O(™X), and O(1), respectively. (i) RC-
TIN-UP-Oracle’s oracle update time is O(u3N? + nlog®n),
where 3 is a data-dependent variable, and p3 € [30, 65] in
our experiments.

Drawbacks: (i) WSPD-Oracle, EAR-Oracle, and RC-TIN-
Oracle only support the static terrain surface and do not
address how to update the oracle on an updated terrain
surface, since they do not utilize Property 1. (ii) Although
WSPD-UP-Oracle, EAR-UP-Oracle, and RC-TIN-UP-Oracle
utilize Property 1, they do not fully utilize it. Since they only
store the pairwise P2P approximate shortest paths on Ty, the
oracle update time remains large. (iii) In the P2P query, the
oracle update time for WSPD-Oracle, WSPD-UP-Oracle, RC-
TIN-Oracle, RC-TIN-UP-Oracle, and UP-Oracle are 35,100s ~
9.8 hours, 8,400s ~ 2.4 hours, 28,100s ~ 7.5 hours, 10,100s ~
2.9 hours, and 400s ~ 6.7 min on a terrain dataset with 0.5M
faces and 250 POls, respectively. In the A2A query, the oracle
update time for EAR-Oracle, EAR-UP-Oracle, and UP-Oracle-
A2A are 7,100s ~ 2 hours, 4,300s ~ 1.2 hours, and 480s ~ 7
min on a terrain surface with 20k faces, respectively.

3.3 Sub-graph Generation Algorithms

Given a complete graph and e, algorithm Greedy Spanner
(GSpan) [36] that runs in O(n3logn) time is the best-known
(1 + €)-sub-graph generation algorithm. Given a (1 + ¢')-
sub-graph and ¢, where ¢ > € > 0, algorithm Sparse
Greedy Spanner (SGSpan) [40] uses a simpler structure to
approximate the internal graph for faster processing and
generates a (1 + €)-sub-graph.

Drawbacks: (i) Algorithm GSpan is very slow since it
does not use any simpler structure to approximate the
internal graph when performing Dijkstra’s algorithm [41] on
the sub-graph. (ii) Although algorithm SGSpan uses a sim-
pler structure for approximation, it cannot take a complete
graph, i.e., ¢ = 0, as input. If we force ¢ = 0, algorithm
SGSpan degenerates to algorithm GSpan. (iii) On a terrain
surface with 0.5M faces and 500 POls, algorithm HGSpan
uses 24s to generate a (1 + ¢)-sub-graph of size 44MB, but
algorithm GSpan uses 101s to generate a (1 + €)-sub-graph
of size 41MB.

4 METHODOLOGY
4.1 Overview of UP-Oracle

1) Components: UP-Oracle has three components.

(i) The temporary graph G is a complete graph that
stores the pairwise P2P exact shortest paths. Let G.V and
G.E Dbe the sets of vertices and edges of G (where each
POI in P is denoted by a vertex in G.V). Given a pair
of POIs u and v, the exact shortest path II(u,v|T) on T
is denoted by an edge e(u,v|T) in G.E with a weight
le(u, v|T)| = |TL(u, v|T)|, where T' can be Ty, or T;4. Figure 2
(b) shows a G with 4 vertices and 6 edges. The light blue
edge e(a, c[Tyy) in G denotes a path T1(a, c|Tyy).

(ii) POI-to-vertex distance table My;; is a hash table [42]
that stores the exact shortest distance from each POl in P to
each vertex in V on Tj,, used for reducing the oracle update
time of UP-Oracle. A vertex u and a POI v is stored as a
key (u,v), and the distance between them [II(u,v|T}y)| is

Fig. 4. In the update phase when (a) updating II(a), (b) updating I1(b), (c) updating II(k), (d) no
need for updating II(f), and (e) no need for updating II(d)

stored as a value. In Figures 2 (c), the exact shortest distance
between POI ¢ and vertex v, is 4.

(iii) The UP-Oracle output graph G’ is a sub-graph
of G used for answering pairwise P2P (1 + €)-approximate
shortest paths. Let G’.V and G’.E be the set of vertices and
edges of G'. Given a pair of vertices v and v in G'.V, let
e'(u,v|T;r) be an edge with a weight [e'(u,v|Tys)|, and let
g (u, v|Typ) be the shortest path on G”. Figure 2 (f) shows a
G’ with 4 edges. The light blue edge ¢’(a, c|T;) in G’ denotes
a path I1(a, ¢|T;z). The shortest path Tl (a, b|T;) consists of
edges ¢/(a, c|Tyy) and €'(c, b| Ty).

2) Phases: UP-Oracle has three phases.

(i) Construction phase: Given Ty and P, considering
each POI in P as the source, we use algorithm SSAD [5],
[10], [23], [24], [25], [26] to simultaneously: (1) calculate the
exact shortest paths between this POl and other POIs on
Tyer, and store these in G, and (2) calculate the exact shortest
distance between this POI and all vertices on Tjf, and store
these in M. In Figures 2 (b) and (c), we first use algorithm
SSAD with a as the source to calculate paths between a and
{b, ¢, d} (the light blue paths), and distances between a and
all vertices. Next, we use b, ¢ as sources and repeat this.

(ii) Update phase: Given Ty, Tip, P, G, and Mg, we
efficiently update paths on 7,4 in G and produce G”:

o Detect updated terrain surface: Given Ty and T, we com-
pare the coordinates of their vertices to detect AF.

o Update exact shortest path: Given Ty, P, G, My, and AF,
we select some POls in P as sources in algorithm SSAD
to update the exact shortest paths on Ty if Property 1 is
not satisfied for paths connecting to these POlIs, and we
update G. In Figure 2 (e), we use a as the source to update
paths between a and {b, ¢, d} (the purple paths). Figure 4
shows more details. In Figures 4 (a) to (c), since a is on a
face in AF, the path with b as the source passes on AF,
and the blue disk D(h, W) centered at h intersects
with AF, Property 1 is not satisfied for all possible paths
connecting a, b, h. So, we use them as sources in algorithm
SSAD for path updating on Ty, and we update G. In
Figures 4 (d) and (e), Property 1 is satisfied, and path
update is not needed. We give more details in Section 4.2.

o Generate sub-graph: Given G and €, we use algorithm
HGSpan to efficiently generate G’ for output size reduc-
tion, such that |/ (s, t|Tos)| < (14 €)|II(s, t|Tys)| for any
pair of POIs s and ¢ in P. In Figure 2 (f), we obtain G’
from G. We give more details in Section 4.3.

(iii) Query phase: Given G’, and a pair of POIs s and
t in P, we use Dijkstra’s algorithm to find the shortest
path between s and ¢ on G’, i.e., g/ (s,t|Tys). In Figure 2
(g), given a source a and a destination b, we calculate

Fig. 5. (a) UP-Oracle output graph G’
and (b) hierarchy graph H of G’

g (a,b|Tys), see the green path.

4.2 Update Phase: Update Exact Shortest Path Step

UP-Oracle has a short oracle update time due to our design
in the update exact shortest path step of the update phase.

1) Method: Recall from Section 1.3 that the short oracle
update time is mainly enabled by the non-updated terrain
shortest path intact property in Property 1, and the stored
pairwise P2P exact shortest paths on Tj,r. We consider three
additional issues and propose four techniques (one for each
of the first two issues, and two for the third issue) to further
reduce the oracle update time.

(i) Which POI to select first for path updating before
Property 1 is utilized - Optimal POI selection sequence: In
Figures 4 (a) to (c), (i) a is in AF, (ii) one of b’s exact shortest
paths, H(b7h\Tbef), passes AF, and (iii) h is near AF. As
Property 1 is not satisfied for the paths connecting a, b, h, we
use a as the source in algorithm SSAD to update the paths
on Tys to other POls simultaneously, and repeat this for b
and h. In Figures 4 (d) and (e), Property 1 is satisfied, so we
do not need to use algorithm SSAD with f and d as sources.
Here, we only need to use algorithm SSAD 3 times, and the
optimal sequence is selecting the POlIs: (i) on a face in AF,
(ii) connecting to the path passing AF, and (iii) near AF
(corresponding to the sequence «, b, h). But, if we do not use
this optimal sequence, e.g., we first update the paths with
¢, d, e, f, g as sources, then we still need to update the paths
with a, b, h as sources. Here, we need to use algorithm SSAD
8 times. Note that the sequence only aims to identify the POI
to select first as the source in algorithm SSAD, and we still
update paths in parallel (as in the construction phase).

(ii) Which disk radius to use in Property 1 - Minimum
disk radius: In Property 1, we use half of the distance
between a pair of POIs as the disk radius to reduce the
likelihood of re-calculating shortest paths on ;4. But, if we
do not use this minimum disk radius, we need to use the
full distance. This increases the likelihood of updating this
path on Tig.

(iii) How to efficiently determine whether Property 1
is satisfied - Efficient distance approximation: In Figure 4
(c), given h, let i be the point belonging to AF that is
closest to h, and let j be the vertex in AV that is closest
to h. When determining whether Property 1 is satisfied,
for the path between h and ¢, we determine whether the
blue disk D(h,r) intersects with AF' (where r = w),
by efficiently determining whether r < [TL(h, j|Tyef)| — Linax
in O(1) time (where [II(h, j|Tyy)| is stored in My). If so,
r < [(h,i|Ty)l|, ie., Property 1 is satisfied, and we do
not need to update the path, since we have the distance

approximation [II(A, j|Thef)| — Luax < [TI(h, 4| Tys)| from the
triangle inequality. Otherwise, we update the path. But,
if we do not use this efficient approximation, we need to
calculate [II(h, | T,z)| using algorithm SSAD in O(N?) time.

(iv) How to efficiently determine whether Property 1
is satisfied - Efficient disk and updated face intersection
check: In Figure 4 (c), we sort the third type of POI in
the optimal POI selection sequence from near to far based
on their minimum distance to any vertex in AV on Ty
using M. Thus, we get the ordering h, f, e, d, c,g. When
determining whether Property 1 is satisfied, we just need to
create one blue disk D(h,r) (where r w is half of
the longest distance of the paths between h and each POI in
{e,d,e, f,g}), and determine whether it intersects with AF".
If the disk with the largest radius and with the center closest
to AF' intersects with AF, Property 1 is not satisfied and
there is no need to check other disks. Otherwise, Property 1
is always satisfied. In total, there are O(n) POIs, we need to
create O(n) disks for efficient checking. But, if we do not use
this efficient checkm% we need to create ten disks, i.e., five
disks D(h, X thh”f) and five disks D(X, HT(XZM) for
checking, where X e {c, d,e, f,g}. In total, there are O(n?)
paths, it needs to create O(n?) disks.

2) Algorithm: Before we provide the algorithm, we
introduce some notation. Let P, {Py, by s pf PM}
be a set of remaining POIs in P on Tz that we have
not processed, where |P;,| is the number of POIs in
Prem. Pren is initialized to be P. In each update itera-
tion, when we have processed a POI, we remove it from
Pre. In Figures 4 (a) and (b), Prem {b,c,d,e, f,g,h}
and P, = {c¢,d,e, f,g,h}. Given a POl u € Py, let
M(u) = {I(w, v1|Ther), I, v2|Thef), - - -, T, Vjricuy| [Ther) } be @
set of the exact shortest paths stored in GG on Tjr with v as an
endpoint and each v; € Py, \{u} as the other endpoint, such
that these paths have not been updated. II(u) is initialized
to be all the exact shortest paths stored in G with u as an
endpoint, where |II(u)| is the number of paths in II(u). In
Figures 4 (a) to (c), the purple paths denote II(a), II(b), and
II(h). We summarize the methods in Algorithms 1 and 2.

Algorithm 1 OnePoillpdate (T, G, u, Prem)

Input: Tip, G, a POl w, and Pren

Output: updated G and updated Py
1: use u as the source in algorithm SSAD to calculate TT(u, v|Ty4) for
each POl v € P, simultaneously

: for each POl v € Py, do

G.E < G.E — {Il(u, v|Tp) } U {T1(w, v|Tip) }

T(v) + T(v) — {TL(u, 0|Ti)}

: Prem < Prem — {U}

: return updated G and Py

ST LN

3) Example: Algorithm 1 is used in three places in Algo-
rithm 2. The following is an example of them.

(i) Initialize P,, and II(u): Lines 1-3. In Fig-
ure 4 (a), we initialize Pe.n = {a,b,c,de,f,g,h},
II(a) {II(a, b|Tyef), I(a, | Thef), - - - , I(a, h|Thep) }, TI(D) =
{H(b, a|Tbef), H(b, C|Tbgf), ceey H(b, h‘Thef)}/ sy and H(h) =
{II(h, a|Tyer), TL(h, b Toef), - - -, TI(h, g|Ther) }- Next, we use the
optimal POI selection sequence for path updating.

(ii) Path update for POI in AF: Lines 4-6. In Figure 4
(a), a is on a face in AF, so Property 1 is not satisfied. We
first use OnePoillpdate (Tys, G, a, Prn) to update the purple

Algorithm 2 Update (T, P, G, My, AF)

Input: Tpq, P, G, My, and AF
Output updated G
. P < P
: for each POl u € Py, do
II(u) < all the exact shortest paths in G with u as an endpoint
: for each POl u € Py, do
if v is on a face in AF (i.e., Property 1 is not satisfied) then
OnePoillpdate (u, Topts G5 Prem)
: for each POI u € Py, do
if u is not on any face in AF but there exists an exact shortest
path in II(u) that passes AF (i.e., Property 1 is not satisfied)
then
9: OnePoillpdate (u, Typ, G, Prem)
10: sort each POI in P, from near to far based on their minimum
distance to any vertex in AV on T using Mgy
11: for each sorted POl u € P, do
12 v <= aPOlin Py such that TI(u, v|Tjy) has the longest distance
among all IT(u)
13: if Property 1 is satisfied, i.e., only one disk D(u, |
o] i)

PN D@

H(u,v\Tl,[/) |)

does not intersect with AF by checking | 5 <
minyy,eav [TH(w, w|Thef)| — Limax, where |TI(u, w|Tyy)| can be re-
trieved from My;; then

14: Prem < Prem — {u}
15: else
16: OnePoilpdate (u, Top, G, Prem)

17: return updated G

paths on Ty, and update G. Then, we remove II(a, X |[Tp)
in II(X) for each X € Py, so Il(a) becomes empty,
H(b) = {H(b, C|Tbgf), I_I(b7 d‘Thef), ce ,H(b, h|Tbgf)}, cey and
H(h) = {H(}L b|Tbgf), H(h7 C|Tbef)a ey H(h, g‘Tbef)}. Fmally, we
remove a from Py, to get Py = {b,c,d, e, f,g,h}.

(iii) Path update for POI connecting to the path
passing AF: Lines 7-9. In Figure 4 (b), b is not on
any face in AF, but II(b, g|Tyy) and TI(b, h|Tyy) in II(u)
pass AF, so Property 1 is not satisfied. We first use
OnePoillpdate (Tys, G, b, Pen) to update the purple paths
on T, and update G. Then, we remove II(b,c|Tjy) in
II(c) for each X € Py, so II(a) and II(b) become empty,
H(C) {H(C, d‘Tbef)7 H(C7 6|Tbef), ey H(C, h‘Tbef)}, .oy and
H(h) = {H(h7 C|Tbgf), H(h7 d‘Tbef), ce ,H(h7 g|Tbef)}' Finally, we
remove b from P, to get Py = {c,d, ¢, f, g, h}.

(iv) Path update for POI near A F: Lines 10-16.

o In Figure 4 (c), the sorted POls are h, f,e,d,c,g. We
process h, and the path with the longest distance is
(¢, h|Tye). Since Property 1 with the minimum disk radius
is not satisfied, i.e., only one blue disk intersects with AF
(determined by checking \H(h%m’f” > |TL(h, §|Tvef)| — Linax
according to efficient distance approximation and efficient
disk and updated face intersection check), we first use
OnePoillpdate (Tyf, G, h, Pren) to update the purple paths
on Ty, and update G. Then, we remove II(h, X |Tbgf) in
II(X) for each X € Py, so I1(a), II(b) and II(h) become
empty, H(C) = {H(C, d|Tbgf), H(C, €|Tbef): ey H(C, g|Tbef)}/

., and H(g) = {H(ga C‘Tbef)7 H(g7 d‘Tbef)v s 71_[(97 f|TbEf)}'
Finally, we remove h from P, to get P., = {c,d,e, f, g}.

o In Figure 4 (d), the sorted POIs are f, e, d, c, g. We process
[, and the paths with the longest distance is II(c, f|Tj)-
Since Property 1 is satisfied, i.e., the blue disk does not
intersect with AF' (determined by checking |W| <
miny,eaAv |TI(f, v[Tper)| — Limax), we do not need to update
the paths connect to f. We remove f from P, to get
P = {c,d, e, g}. Then, the sorted POIs are e, d, c, g, and

we process e similar to above.
« In Figure 4 (e), the case is also similar.

4) Lemma: We give three important lemmas as follows.

(i) Necessity of storing the pairwise P2P exact shortest
paths (i.e., G) on Ty, Let U(A) be the Update ratio of an ora-
cle A, which is defined as the number of POlIs in P that need
to be used as a source in algorithm SSAD (for path updating
on Ty) divided by the total number of POIs. In Figures 4
(a) to (c), we use algorithm SSAD with a, b, h as sources to
update shortest paths on 74 for UP-Oracle, and WSPD-UP-
Oracle. In Figure 4 (d), UP-Oracle (resp. WSPD-UP-Oracle)
calculates an exact (resp. approximate) path between ¢ and
f on Ty The disk radius centered at f is smaller (resp.
larger), so the disk does not (resp. may) intersect with AF’,
and UP-Oracle does not need to (resp. WSPD-UP-Oracle may
need to) use algorithm SSAD with f as source to update
shortest paths on T,;. The case also happens for the paths
between c and e. In Figure 4 (e), the case also happens for the
path between g and each POI in {¢, d}. Thus, for UP-Oracle
(resp. WSPD-UP-Oracle), we perform algorithm SSAD with
three POIs a, b, h (resp. seven POIs «, b, ¢, d, e, f, g) as
sources for path updating on Tj4. As there is a total of eight
POIs, U(UP-Oracle) = 2 (resp. U(WSPD-UP-Oracle) = I).
The oracle update time of WSPD-UP-Oracle is 2.4 times
larger than that of UP-Oracle. RC-TIN-UP-Oracle is similar to
WSPD-UP-Oracle. Given an oracle A, a higher U(A) means
that the oracle update time of A is larger. Lemma 1 shows
the necessity of storing G.

Lemma 1.Given Ty, Tip, P, and an oracle A that
does not store the pairwise P2P exact shortest paths on T,
U(UP-Oracle) < U(A).

Proof. By storing GG, we can minimize the likelihood of up-
dating the paths on T4, so U(UP-Oracle) is the smallest. [

(ii) Correctness of the efficient distance approximation:
In the distance approximation, we have “[II(h,j|Ty)| —
Liax < |TI(h,i|Tyz)| due to the triangle inequality” in Fig-
ure 4 (c). Lemma 2 shows the correctness of this inequality,
implying that the correctness of the efficient distance ap-
proximation. In Lemma 2, u can be h, any point on a face in
AF can be i, and v can be j in Figure 4 (c).

Lemma 2. The minimum distance from a POI u to any point
on a face in AF on Ty is at least miny,e Ay |TL(t, v|Ther) | — Linax-

Proof Sketch. We show that the minimum distance from u to
a point of e on Tig is the same as on Ty, where e is an edge
that belongs to a face in AF, and that the exact shortest path
from u to AF intersects with any point on e for the first time.
Then, we use the triangle inequality to prove it. O

(iii) Correctness of the efficient disk and updated face
intersection check: In the intersection check, we just need to
create one blue disk D(h,r) (where r = w is half of
the longest distance of the paths between h and each POl in
{c,d,e, f,g}), and determine whether it intersects with AF
in Figure 4 (c), instead of creating ten disks. Lemma 3 shows
the correctness of this check. The disk in Lemma 3 can be
D(h, w) in Figure 4 (c).

Lemma 3. If the disk, centered at u, with radius equal to half
of the longest distance among all non-updated paths adjacent to

8

u, intersects with AF, Property 1 is not satisfied, and we need
to use algorithm SSAD to update all non-updated paths adjacent
to u. Otherwise, Property 1 is satisfied, and there is no need to
update shortest paths adjacent to u.

Proof Sketch. If the disk with the largest radius intersects
with AF, Property 1 is not satisfied, and there is no need
to check other disks. If the disk with the largest radius and
with the center closest to AF does not intersect with AF,
then other disks cannot intersect with AF’, and Property 1 is
satisfied. O

4.3 Update Phase: Generate Sub-graph Step

UP-Oracle can efficiently reduce the output size due to
our design in the generate sub-graph step (using algorithm
HGSpan) of the update phase. Due to this, the output size
of UP-Oracle is 44MB on a terrain surface with 0.5M faces
and 500 POlIs, but the value is 520MB for WSPD-Oracle and
416MB for RC-TIN-Oracle.

1) Concept: The hierarchy graph H is a graph that has
a simpler structure than G’, and it is used for efficiently
generating G’ using G. Let Q¢ be a group of vertices in G'.V
with group center v € Q¢ and radius r, such that for every
vertex u € Qgr, we have [Ilgr (u, v|Tys)| < 7. A set of groups
Q& Q%,...,Qk, is a group cover of G’ if every vertex in
G'.V Dbelongs to at least one group, where k is the number
of groups. H can form a set of groups by regarding several
vertices in G’ that are close to each other as one vertex. As a
result, H is an approximation of G’. Similar to G’, let H.E be
the set of edges of H. Given a group Q%,,, let the intra-edges
be the set of edges connecting the group center of Q% to
all other vertices in Q%,,, and let the inter-edges be the set of
edges connecting two group centers. Given a pair of vertices
wand v in H.E, let ey (u,v|T;s) be an (intra- or inter-) edge
with a weight |eg(u, v|Ty4)|. Given a pair of group centers
s and t, let Il (s,t|Tys) be the shortest path between them
in H that only consists of inter-edges. Figures 5 (a) and (b)
show a G’ and its corresponding H. There are three groups
with centers c, e, g in H. The light blue paths are intra-edges
and the purple paths are inter-edges. The shortest path
g (c, g|Tan) consists of edges ex(c, e|Tyy) and eq (e, g|Tip)-

2) Method: We introduce algorithm HGSpan as follow.

(i) Why algorithm HGSpan is efficient: Given a com-
plete graph G and ¢, algorithm HGSpan sorts edges in G
based on their length in ascending order, and we initialize
sub-graph G’ to be empty. For each sorted edge in G.E,
e.g., le(c,h|Tip)| in Figure 5 (a), if [Tl (c, h|Tip)| > (1 +
e)le(c, h|Tys)|, it is inserted into G’, where |Ilg/(c, h|Tys)| is
approximated by the distance between the group centers of ¢
and hon H,i.e., |l (c, g|Tis)| in Figure 5 (b). It is calculated
using Dijkstra’s algorithm in O(1) time. But, if we do not use
H for approximation, we need to use Dijkstra’s algorithm
on G’ to calculate [/ (c, h|Te)| in O(nlogn) time, as in
algorithm GSpan [36]. We repeat this for all edges in G, and
return G’ as the output.

(ii) How to construct H: To construct H, we sort the
edges in G based on their length in ascending order. We then
divide them into logn intervals, where each interval con-
tains edges with lengths in (¥7 %] for i € [1,logn] and
D is the length of the longest edge in G. In Figure 5 (b), for
the i-th iteration, we select ¢, e, g as group centers and create

groups with radius 52 D where § = —w €
(0,3) since € € (0, oo) We insert intra-edges (light blue
paths) into H between each group center and vertices in
this group, and we insert inter-edges (solid purple paths)
into H between every two group centers such that the
distances between them on G’ are at most 2nD + 262nD

Then, we use H to approximate G'. For each sorted edge in
G with length in the current length interval, e.g., e(c, h|Tjz)
in Figure 5 (a), if [Ig/ (¢, h|Tin)| > (1 + €)|e(c, h|Ths)|, where
[Tl (c, h|Tys)| is approximated by [I1x (c, g|Tys)|, we insert
this edge (dashed light blue path) into G’ and also insert
an inter-edge between the group centers of ¢ and £, ie.,
en(c, g|Tin) (dashed purple path), into H. Having processed
all edges in the current length interval, for the (i + 1)-st
iteration, we repeat the above process to re-construct H, so
that H is a valid approximate graph of G’. But, in algorithm
SGSpan [40], if we force it to use a complete graph as input,
the radius of each group in H becomes 0, and it degenerates
to algorithm GSpan. In algorithm HGSpan, we use a different
process to construct H (i.e., we insert inter-edges into H at
two different stages: one before processing edges in G, and
another one during this process), and we set the radius of
each group in H to exceed O (i.e., § QZ—LD > 0 since § > 0), to
avoid the degeneration by sacrificing the output size.

3) Algorithm: Algorithm 3 details HGSpan.

Algorithm 3 HGSpan (G, ¢€)

Input: G and €

Output: G’ (a sub-graph of G)
1: D < the length of the longest edge in G.E
2: for each edge e(u, v|Ty) € G.E do

3: sort edge length in increasing order v

4: create intervals Iy = (0, %], I = (21:[) , %] fori € [1,logn]
5: G.E' + sorted edges of G.E with length in I;

6: G'.E + G.E°

7: fori < 1tologn do

8 HE<+

9: foreach u; € G.V that has not been visited do
10: perform Dijkstra’s algorithm on G’, such that the algorithm

never visits vertices further than ¢ TnD from u;

11: create group Q7, < {u;} with group center u;, u; < visited

12: for each v € G.V such that |TIg (uj, v|Tis)| < 52:—? do

13: %, {v}, v < visited

14: H intra-edges < H.E U {em(uj,v|Tin)}, where
ey, 0 To)| = M (. o1 T5)

15: jJ+1

16: for each group center u; do

17: perform Dijkstra’s algorithm on G’, such that the algorithm

never visits vertices further than Z2 + 2622 from uj

18: H inter-edges <— H.E U {en(uj,u|Tin)}, where u is other

group centers and |ey (uj, u|Tos)| = [T (uj, u|The)|

19: G i+1

20: for each edge e(u,v|Ty) € G.E* do

21: w <— group center of u, x < group center of v

22: g (w, z|Tys) + the shortest path between w and x calculated

using Dijkstra’s algorithm on H

23: if [Ty (w, z|The)| > (1 + €)|e(u, v|Ti)| then

24: G'.E + G".EU{e(u,v|Tip)}

25: H inter-edge + H.E U {em(w,z|T;s)}, where
len(w,Tyn)| = len(w,ulTy) + le(u,o|Ty)| +
|6H (Uv xu—;zﬂ

26: return G’

4) Example: The following is an example of Algorithm 3.

(i) Sort edge, split interval, and initialize G’: Lines 2-6.
We insert edges of G with lengths in Iy = (0, £] into G'.

(ii) Construct G’: Lines 7-25, let i = 1 and we clear H.

9

o Lines 9-15 (construct group and insert intra-edge into H):
When i = 1, there is a limited number of edges in &,
i.e., most pairs of vertices in G’.V are not connected by an
edge. It is likely that every vertex in G'.V forms a group
itself in H, and there are no intra-edges in H since each
group only contains one vertex.

o Lines 16-19 (insert first type inter-edge into H): Similarly, it
is likely that there are no inter-edges in H.

 Lines 20-25 (insert edge into G’ and second type inter-edge
into H): For each edge e(u,v|T;;) in G with a weight in
Iy = (£, 22], it is likely that the group center of u (resp.

v) in H is u (resp. v) itself, i.e,, w = v and = v. Since

there is a limited number of edges in G’, line 23 is likely
true, and we insert e(u,v|Tyy) into G' and eq (w,z|Typ)
into H.

(iii) Continuing construct G’: Lines 7-25, we repeat the
above process. Suppose that we start the i-th iteration and
we clear H.

o Lines 9-15: Suppose that we have G’ as shown in Fig-
ure 5 (a). Based on G.V, we create three groups with
centers c, e, g in H, see Figure 5 (b). We insert intra-edges
en(a,c[Tig), ..., en(g,iThs) (light blue paths) into H in
Figure 5 (b).

o Lines 16-19: We insert inter-edges ep(c,e|Tyz) and
en (e, g|Tys) (solid purple paths) into H, see Figure 5 (b).

o Lines 20-25: Suppose that we need to examine edge

e(c,h|Tys) in G in Figure 5 (a) with a weight in I; =

(222 2D] and the group center of ¢ (resp. h) in H
is ¢ (resp g). Then, we check whether Iy (c,g|Tys)| >
(1 + €)le(c, h|Tyn)|. If so, we insert edge e(c,h|Tys)
(dashed light blue path) into G’, and insert inter-
edge epr(c,g|Ty) (dashed purple path) with a weight
le(c, g|Tun)| + ler (g, h|Thp)| into H. Next, we repeat this
by starting the (¢ + 1)-st iteration and clear H. This way,
we construct G'.

5) Lemma: Lemma 4 analyzes algorithm HGSpan.

Lemma 4. The running time of HGSpan is O(nlog®n).
The output of HGSpan, ie., G', satisfies g (u,v|Tps)| <
(14 €)|TL(u, v|Tyg)| for all pairs of vertices u and v in G'.V/

Proof Sketch. The running time includes (1) the O(n) time to
sort edge, split interval, and initialize G’ due to n vertices in
G, and (2) the O(nlog®n) time to construct G’ due to total
logn intervals and O(nlogn) time needed for each interval.
For the error bound, we use the same notation in Algorithm 3.
Since H is a valid approximation of G’, in lines 20-25
of Algorithm 3, when we check whether Il (w,z|T)| >
(1 + €)|e(u,v|Tys)|, we are checking [Tlg: (u,v|Ths)| > (1 +
€)le(u,v|Tis)|. For any edge e(u,v|Ts) € G'.E that is not
inserted to G', we know [Tlg: (u, v|Tis)| < (14 €)le(u, v|Tg)l.
Since |e(u, v|Tys)| = [TI(u, v|Tys)|, we have [Tlgr (u, v|Ths)| <
(1 + O (u, 0| Typ)|. O

4.4 Handling Subsequent Changes

So far, we have handled a single change. After one change,
we have the updated G and the sub-graph G’. There is no
old G, since we update G partially by using the new paths
on Ty to replace the original paths on Tys. We keep G in the
hard disk and use G’ for shortest paths queries. To adapt
UP-Oracle to handle subsequent changes, we also update

M simultaneously when using algorithm SSAD for path
updating in the update exact shortest path step of the update
phase. Then, if subsequent changes occur, we update G and
M_ist, and generate G’ to support querying.

4.5 Adaption to Multi-layer Structure (UP-Oracle-MuLa)

We can adapt UP-Oracle to using a multi-layer structure,
thus obtaining UP-Oracle-MuLa. Long-range queries utilize
the approximate paths obtained from G’, and short-range
queries utilize the exact paths obtained from G with differ-
ent LODs. Suppose that there are | LODs. The basic idea
is to form temporary hierarchy graphs Hi, Hj, ..., H| from
G (similar to H, but H is constructed based on G’, while
H{,Hj, ..., H| are constructed based on G) with different
group radii that correspond to different LODs. Then, we
can regard the groups of each temporary hierarchy graph as
short-range query regions. Specifically, to adapt UP-Oracle
to become UP-Oracle-MuLa, we add one more step called
generate multi-layer structure at the end of the update phase
of UP-Oracle, and we add one more check in the query phase
of UP-Oracle.

1) Update phase: In the generate multi-layer structure step
of the update phase of UP-Oracle-MulLa, we construct a
temporary hierarchy graph H/ from G using a fixed set of
group centers with radius Duwan (where Dyyenn is the mean
length of all edges in G) at each LOD = 1.

(i) When LOD = 1, i.e., the most zoomed-in level, we
build Hj using the insert intra-edge and first type inter-edge
step of algorithm HGSpan with group radius % For any
pairs of POIs that belong to the same group in Hj, we store
their exact paths in a hash table ;. We then store M; in a
hash table M;op corresponding to LOD = 1.

(ii) When LOD = i > 1, we build H} using the same
group centers as of H{ with group radius “Zmu. For any
pair of POIs that belong to the same group in H], we store
their exact path in a hash table M;, such that these paths do
not exist in any previous tables M;, Ms, ..., M;_1. We then
store M; in Mjop corresponding to LOD = i. We repeat this
until ¢ = [. Finally, M;op and G’ are returned as the output.

Note that when LOD = ¢ > 1, H;_; and H] have the
same group centers, but the group radius of H] is larger
than that of H/_;, so if a pair of POIs belong to the same
group in H/_; (such that their corresponding exact path is
stored in one of M, M, ..., M,;_,), they also belong to the
same group in H;, and we do not need to store this exact
path again in M;. Thus, the sum of exact paths stored in
Miop does not exceed the total number of exact paths in G.

2) Query phase: In the query phase of UP-Oracle-MulLa,
given Miop, G’, a LOD i, and a pair of POIs s and ¢ in
P, (i) if the exact path between s and ¢ does not exist in
My, My, ..., M, of Mrop, we use Dijkstra’s algorithm to find
the path between them on G’ using the query phase of UP-
Oracle; (ii) otherwise, we simply return the exact paths.

4.6 Adaption to the A2A Query (UP-Oracle-A2A)

We can adapt UP-Oracle to be UP-Oracle-A2A for the
A2A query. We first place Steiner points on Tjs using
the method in study [43], and then use them as in-
put (not the POIs) to construct UP-Oracle-A2A (as of
UP-Oracle). When Tj,s changes to T4, the positions of

10

Steiner points (based on T4) also change, we update UP-
Oracle-A2A using these Steiner points accordingly. For the
query phase, given arbitrary point s (resp. t) on face f,
(resp. fi), we let S(s) (resp. S(t)) be a set of Steiner
points on f; (resp. f;) and its adjacent faces [43]. Then,
we return Ilg/(s,t|Tp) in UP-Oracle-A2A (which has the
same definition in UP-Oracle) by concatenating I1(s, p|Tiz),
Oe (p, q|Tin), and TI(q,t|Ths) such that [Mgr(s,tThs)| =
mittye () qes(o [T, ol Ton) | + e (p,al Ton) | + (g, tTo)],
where [II(s, p|Tyq)| and |T1(g, t|T;z)| can be calculated in O(1)
time using algorithm SSAD and |l (p, q|T4z)| is distance of
the path between p and ¢ returned by UP-Oracle-A2A.

4.7 Theoretical Analysis
Theorem 1 analyzes UP-Oracle and its two adaptions.

Theorem 1. The oracle construction time, oracle update time,
output size, and shortest path query time of (1) UP-Oracle and
(2) UP-Oracle-MuLa are both O(nN?), O(N? +nlog®n), O(n),
and O(logn), and (3) UP-Oracle-A2A are O(snfv;\ﬁ log1),

O(N2 + sinjz\ﬁ IOg % 10g2(sin]g\ﬁ IOg %)’ O(sin];\/g log %)’ and
O(log(75 7 log 1)), respectively. (1) UP-Oracle, (2) UP-
Oracle-MuLa, and (3) UP-Oracle-A2A satisfy |lg: (s, t|Ths)| <
(1+€)|IL(s, t|Tip)| for all pairs of (1 & 2) POIs s and t in P, and

(3) points s and t on Ty, respectively.

Proof Sketch. We first discuss UP-Oracle. The oracle construc-
tion time includes the O(nN?) time to calculate the pairwise
P2P exact shortest paths time due to total n POIs and the
use of algorithm SSAD in O(N?) time for each POI. The
oracle update time includes (1) O(N) time to detect updated
terrain surface due to O(N) faces, (2) O(N?) time to update
exact shortest paths due to total O(1) updated POIs and
the use of algorithm SSAD in O(N?) time for each PO,
(3) and O(nlog®n) time to generate sub-graph time due
to algorithm HGSpan in Lemma 4. The output size is O(n)
due to the output graph size of algorithm HGSpan. The
shortest path query time is O(log n) due to the use of Dijkstra’s
algorithm on G’ (in our experiments, G’ has a constant
number of edges and n vertices). The error bound is due to
algorithm HGSpan’s error.

We then discuss UP-Oracle-MuLa. The oracle construction
time is the same as of UP-Oracle. The oracle update time
includes the oracle update time in UP-Oracle, and also the
O(nlogn) time to generate multi-layer structure due to total
O(1) temporary hierarchy graphs and the O(nlogn) time
needed for constructing each graph. The output size is O(n)
due to the output graph size of algorithm HGSpan and the
O(n) size of Miop. The experimental shortest path query time
and error bound are better than those of UP-Oracle since
UP-Oracle-MuLa stores some exact paths in M;op, but the
theoretical time, and error are the same as of UP-Oracle.

We then discuss UP-Oracle-A2A. Since there is a total
of Sinjz 7 log% Steiner points [43], we use this value to
substitute n in UP-Oracle to obtain the new oracle construction
time, oracle update time, output size, and shortest path query
time. The error bound is due to the error bound of UP-Oracle
and the proof in study [43]. O

Since the adapted UP-Oracle for subsequent changes has
the same update phase as UP-Oracle, they share the same
complexity analysis.

TABLE 2
Real earthquake terrain datasets

Name Magnitude Date
Tohoky, Japan (T7) [45] 9.0 Mar 11, 2011
Sichuan, China (SC) [15] 8.0 May 12, 2008
Gujarat, India (GI) [46] 7.6 Jan 26, 2001
Alaska, USA (AU) [47] 7.1 Nov 30, 2018
Leogane, Haiti (LH) [48] 7.0 Jan 12, 2010
Valais, Switzerland (VS) [13] 4.1 Oct 24, 2016
TABLE 3
Comparison of algorithms
Oracle Oracle Outout Shortest
Algorithm construction update sizeP path query
time time time
Oracle-based algorithm
WSPD-Oracle [9], [10] Large Large Large Small
WSPD-UP-Oracle [9], [10] Large Large Small Small
EAR-Oracle [5] Large Large Large Medium
EAR-UP-Oracle [5] Large Large Small Small
RC-TIN-Oracle [28] Small Large Medium Small
RC-TIN-UP-Oracle [28] Small Large Small Small
UP-Oracle (ours) Small Small Small Small
On-the-fly algorithm
WAV-Fly-Algo [24], [25] N/A N/A N/A Large
ESP-Fly-Algo [6], [12] N/A N/A N/A Large

5 EMPIRICAL STUDY
5.1 Experimental Setup

We conduct experiments on a Linux machine with a 2.20
GHz CPU and 512GB memory. All algorithms are imple-
mented in C++. Our experimental setup generally follows
the setups in the literature [6], [7], [8], [9], [10], [12].

1) Datasets: We conduct our experiments on 30 real
before and after earthquake terrain datasets listed in Table 2
with 0.5M faces !. We obtain the earthquake terrain satellite
maps with a 5km x 5km region from Google Earth with
a resolution of 10m [8], [9], [10], [27], and then we use
Blender [44] to generate the terrain model. To study the
scalability, we follow an existing multi-resolution terrain
dataset generation procedure [8], [9], [10] to obtain different
resolutions of these datasets with 1M, 1.5M, 2M, 2.5M faces.
This procedure appears in our technical report [38]. We
extract 500 POIs using OpenStreetMap [9], [10].

2) Algorithins: We include the best-known exact on-
the-fly algorithm WAV-Fly-Algo [24], [25], the best-known
approximate on-the-fly algorithm ESP-Fly-Algo [6], [12], the
best-known oracle WSPD-Oracle [9], [10] for the P2P query
on terrain surfaces, its adaption WSPD-UP-Oracle, the best-
known oracle EAR-Oracle [5] for the A2A query on terrain
surfaces, its adaption EAR-UP-Oracle, the adapted oracle
from point clouds to terrain surfaces RC-TIN-UP-Oracle [28]
and its adaption EAR-UP-Oracle as baselines. In Table 3, we
compare these algorithms with UP-Oracle. The comparisons
of all algorithms (using big-O notation) can be found in
our technical report [38]. Since the adapted UP-Oracle for
subsequent changes has the same update phase as UP-
Oracle, they have the same complexity and we omit the
former oracle.

1. We upload the datasets at IEEE DataPort https://dx.doi.org/10.
21227 /7ras-ng51

11

3) Query generation: We randomly choose pairs of POIs
in P for the P2P query, or arbitrary points on Ty for the A2A
query, and we report the average, minimum, and maximum
results of 100 queries.

4) Parameters and performance metrics: We study the
effect of three parameters, namely (i) ¢, (ii) n, and (iii) dataset
size DS (i.e., the number of faces in a terrain model). We con-
sider six performance metrics, namely (i) oracle construction
time, (ii) oracle update time, (iii) oracle size (i.e., the space usage
of G, My, and H), (iv) output size (i.e., the space usage of
G"), (v) shortest path query time, and (vi) distance error (i.e., the
error of the distance returned by the algorithm compared
with the exact shortest distance).

5.2 Experimental Results

Our experiments show that WSPD-Oracle, WSPD-UP-Oracle,
EAR-Oracle, EAR-UP-Oracle, RC-TIN-Oracle, and RC-TIN-
UP-Oracle have excessive oracle update times with 500 POIs
(more than 1 days), so we compare (1) all algorithms on 30
datasets with fewer POlIs (50 by default), and (2) UP-Oracle,
WAV-Fly-Algo, and ESP-Fly-Algo on 30 datasets with more
POIs (500 by default). For the shortest path query time, the
vertical bar and the points denote the minimum, maximum,
and average results.

1) Ablation study for the P2P query: We consider 6
variations of UP-Oracle, i.e., (i) we use a random POI
selection sequence, instead of using our optimal POI se-
lection sequence, (ii) we use the full shortest distance of
a shortest path as the disk radius, instead of using our
minimum disk radius, (iii) we do not store the POI-to-vertex
distance information and re-calculate the shortest path on
Ty for determining whether the disk intersects with AF,
instead of using our efficient distance approximation, (iv)
we create two disks for each path when checking whether
we need to re-calculate the shortest path between a pair
of POlIs, instead of using our efficient disk and updated
face intersection check, (v) we remove the generate sub-
graph step, i.e., algorithm HGSpan in the update phase and
use a hash table to store the pairwise P2P exact shortest
paths on Ty in G, and (vi) we use algorithm GSpan [36]
or algorithm SGSpan [40] (degenerates to algorithm GSpan
when the input is a complete graph), instead of using
algorithm HGSpan in the generate sub-graph step of the
update phase. We use UP-Oracle-X where X € {RanSelSeq,
FullRad, NoDistAppr, NoEffIntChe, NoEdgPru, NoEffEdgPru}
to denote these variations. The first four oracles correspond
to the four techniques in Section 4.2. The last two oracles
correspond to the idea covered in Section 4.3.

In Figure 6 (resp. Figure 7), we test the 5 values of n
in {50, 100, 150, 200, 250} on TJ (resp. {500, 1000, 1500,
2000, 2500} on SC) dataset while fixing ¢ at 0.1 and DS
at 0.5M (resp. € to 0.25 and DS to 0.5M) for the ablation
study involving 6 variations (resp. the last 3 variations, since
the first 3 variations have excessive oracle update times
with 500 POIs) and UP-Oracle. The oracle update time for
UP-Oracle-X, where X € {RanSelSeq, FullRad, NoDistAppr,
NoEffintChe, NoEffEdgPru} exceeds that of UP-Oracle due
to the four techniques from Section 4.2 and the use of
algorithm HGSpan from Section 4.3. Although the oracle
update time and the shortest path query time of UP-Oracle-
NoEdgPru are slightly smaller than those of UP-Oracle, the

https://dx.doi.org/10.21227/7ras-ng51
https://dx.doi.org/10.21227/7ras-ng51

UP-Oracle-RanSelSeq ——
UP-Oracle-FullRad <~

UP-Oracle-NoEffIntChe

UP-Oracle-NoDistAppr

4 350
@300
2050
8200
2150
>

2100
>

8 50

00 150 200 250
POI number
(b)

05
50 100 150 200 250
POI number

(@)

Fig. 6. Ablation study on TJ dataset with fewer

POI number
(©

POls for the P2P query

UP-Oracle-NoEdgPru -
UP-Oracle-NoEffEdgPru <7

12

UP-Oracle <>~

12000 25000 [
B o
?gggg 1 220000 |
[
E N L
= 6000 g 15000
_§ 4000 A 5_10000 r
S 2000 & 5000
i
0 0 B8
05 1 15 2 25 05 1 15 2
POl number (k) POl number (k)
(a) (b)

25

05 1 15
POI number

(©

—N

k)

Fig. 7. Ablation study on SC dataset with more POls for the P2P query

ESP-Fly-Algo <

Theoretical bound (g) -~

1

WSPD-Oracle —— EAR-Oracle ©- RC-TIN-Oracle 4+ UP-Oracle <>
WSPD-UP-Oracle —<- EAR-UP-Oracle RC-TIN-UP-Oracle <7 WAV-Fly-Algo -G~
— ——— ——— 6
2 10° 103 T 0% 10
010° IBE—EB—EHs @ %%%zg @ 0
£ © 4 =3]g 102 E
= £10 o 9 g
c = N _ 2| 1N £
2 o 2 6 10 @ 10’ > =
3} 2,43 ® P
=] <10 S 2 o
= g B g .0 9]
: 5 8.0 3" G
3 10? 10 ¢ i 1 .

0.8

5 0.6

0 02040608 1 0 02040608 1

€

(b)

3
(c)

0 02040608 1
€
)

0 02040608 1
€
(@)

0 02040608 1
©)

Fig. 8. Baseline comparisons (effect of ¢ on G/ dataset with fewer POlIs) for the P2P query

WSPD-Oracle —— EAR-Oracle -©- RC-TIN-Oracle 4~ UP-Oracle < ESP-Fly-Algo
WSPD-UP-Oracle —-<- EAR-UP-Oracle RC-TIN-UP-Oracle <+ WAV-Fly-Algo &~
g 108 1600 100 ————
@ g% ¢ 25 100 1400 8
(2] L i
o 2.2 EY Y Y YN = Y
GE) ;10 [} 103 3 4 21200 ;; 60 | |
= %101 E 10004 1000 X
5 E =10t £ 800 5 40 1
2 1 IRT B £
=) 8100 S = 600 8 20 € R
A, B 400 b
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 05 1 15 2 25 05 1 15 2 25 05 1 15 2 25
POI number POI number POI number Dataset size (M) Dataset size (M) Dataset size (M)
(a) (b) (c) (a) (c)

Fig. 9. Baseline comparisons (effect of n on AU dataset with fewer
PQls) for the P2P query

UP-Oracle-MuLa —— UP-Oracle <>~

460 ———————— 350 ——————+—— 25
w450 { @300 12
o =250 | 1E 2
2440 1% l o
£ 8200 + g5
=430 f L & £
2 —< ,5150 r 1 '; 1
420t 1 8100 | 18
Sat10 ¢ 7850%}\6 1508

400 & L L L L A ol S e AN, ol L L L L

0 02040608 1
(©

0 02040608 1
€

(a)

0 02040608 1
€
(b)

Fig. 11. Multi-layer structure comparison on SC dataset

output size for UP-Oracle-NoEdgPru is 10* times due to the
use of algorithm HGSpan. Thus, UP-Oracle is the best oracle
among the variations.

2) Baseline comparisons for the P2P query: We proceed
to compare different baselines with UP-Oracle.

Effect of e: In Figure 8, we test the 6 values of ¢ in {0.05,
0.1, 0.25, 0.5, 0.75, 1} on GI dataset with fewer POIs while
fixing n at 50 and DS at 0.5M. Although all algorithms have
errors close to 0%, UP-Oracle offers superior performance
over other baselines in terms of the oracle construction time,
oracle update time, output size, and shortest path query
time due to the non-updated terrain shortest path intact prop-

Fig. 10. Scalability test (effect of DS on LH dataset with more POls) for
the P2P query

WSPD-Oracle-A2A ——
WSPD-UP-Oracle-A2A <~
EAR-Oracle ©-

R=s

RV

RC-TIN-UP-Oracle-A2A -
UP-Oracle-A2A <
WAV-Fly-Algo -G~
EAR-UP-Oracle ESP-Fly-Algo <
RC-TIN-Oracle-A2A

3000 —

5
32500 g 10 z 184
£2000 3 107 @ 103
= [N g 10
— 1500 B 19" E 102
$1000 y 3 I
B £ 100 g 10
5 500 1o = G 10°

10 ., ot = s

0 02040608 1

0
0 02040608 1

€ €

(c)

(a)

0 02040608 1
€
(0)

Fig. 12. A2A query on SC dataset

erty, the stored pairwise P2P exact shortest paths on Tj,,
and the use of algorithm HGSpan in UP-Oracle. Although
the oracle size of UP-Oracle is slightly larger than those
of WSPD-Oracle, WSPD-UP-Oracle, RC-TIN-Oracle, and RC-
TIN-UP-Oracle, the oracle update time of UP-Oracle is 88
times, 21 times, 70 times, and 17 times smaller, respectively.
Varying e has (i) no impact on the oracle construction time
of UP-Oracle since it is independent of ¢, (ii) a small impact
on the oracle update time of UP-Oracle, since when n is
small, the update exact shortest path step dominates the
generate sub-graph step, and the former step is independent
of ¢, and (iii) a small impact on the oracle construction time

and oracle update time of other oracles since their early
termination criteria of using algorithm SSAD are loose (i.e.,
they need to use algorithm SSAD to cover most of the POIs
or highway nodes as destinations even when e is large).

Effect of n: In Figure 9, we test the 5 values of n in {50,
100, 150, 200, 250} on AU dataset while fixing € at 0.1 (we
also have the results with 5 values of n in {500, 1000, 1500,
2000, 2500} while fixing € at 0.25 in our technical report [38])
and DS at 0.5M. The oracle update time, output size, and
shortest path query time of UP-Oracle remain better than
those of the baselines. Specifically, the oracle update time of
UP-Oracle is 21 times, 23 times, and 17 times smaller than
those of WSPD-UP-Oracle, EAR-UP-Oracle, and RC-TIN-UP-
Oracle, respectively. Since WSPD-UP-Oracle, EAR-UP-Oracle,
and RC-TIN-UP-Oracle have output graph G’ (which is
similar to UP-Oracle), their output size and shortest path
query time are similar to those of UP-Oracle.

3) Scalability test for the P2P query (effect of DS): In
Figure 10, we test 5 values of DS in {0.5M, 1M, 1.5M, 2M,
2.5M} on LH dataset with more POIs while fixing € at 0.25
and n at 500. UP-Oracle can scale up to a large dataset with
2.5M points. Since UP-Oracle is an oracle, its shortest path
query time is 10° times smaller than that of ESP-Fly-Algo.

4) Multi-layer structure: In Figure 11, we compare UP-
Oracle, and UP-Oracle-MuLa by varying e from {0.05, 0.1,
0.25, 0.5, 0.75, 1} and fixing n at 500 and DS at 0.5M on SC
dataset. The oracle update time, output size, and shortest
path query time of UP-Oracle-MuLa are 1.1 times larger, 10
times larger, and 2 times smaller than those of UP-Oracle,
since UP-Oracle-MuLa uses Miop to store some exact paths
to accelerate shortest-range queries.

5) A2A query: In Figure 12, we test the A2A query
by varying e from {0.05, 0.1, 0.25, 0.5, 0.75, 1} while
fixing DS at 2k on a multi-resolution of SC dataset. We
adapt WSPD-Oracle, WSPD-UP-Oracle, RC-TIN-Oracle, and
RC-TIN-UP-Oracle that answer the P2P query in a similar
way to UP-Oracle-A2A, and denote them as WSPD-Oracle-
A2A, WSPD-UP-Oracle-A2A, RC-TIN-Oracle-A2A, and RC-
TIN-UP-Oracle-A2A (such that they can answer the A2A
query). The oracle update time of UP-Oracle-A2A is 15 times
better than the best-known oracle EAR-Oracle on terrain
surfaces for the A2A query.

6) Case study: We conduct a case study on the 4.1 mag-
nitude earthquake (which caused an avalanche) in Valais
as mentioned in Section 1.1. In this case study, on a terrain
surface with 0.5M faces and 250 POlIs, UP-Oracle just needs
400s ~ 6.7 min to update the oracle, but the best-known
oracle WSPD-Oracle for the P2P query needs 35,100s ~ 9.8
hours. Answering 100 paths takes 0.1s for UP-Oracle, 8,600s
~ 2.4 hours for the best-known on-the-fly algorithm ESP-
Fly-Algo, and 0.3s for WSPD-Oracle. Thus, only UP-Oracle is
suitable for earthquake rescuing to save lives.

7) Summary: In terms of the oracle update time, output
size, and shortest path query time, UP-Oracle is up to 88
times, 12 times, and 3 times (resp. 15 times, 50 times, and
100 times) better than the best-known oracle WSPD-Oracle
for the P2P query (resp. EAR-Oracle for the A2A query) on
terrain surfaces. (i) For the P2P query on a terrain dataset
with 0.5M faces and 250 POls, UP-Oracle’s oracle update
time is 400s =~ 6.7 min, while WSPD-Oracle and RC-TIN-
Oracle take 35,100s =~ 9.8 hours and 28,100s ~ 7.5 hours.

13

(ii) the shortest path query time for computing 100 paths is
0.1s for UP-Oracle, while the time is 8,600s ~ 2.4 hours for
ESP-Fly-Algo, 0.3s for WSPD-Oracle, and 0.1s for RC-TIN-
Oracle. (iii) For the A2A query on a terrain dataset with 20k
faces, the oracle update time and shortest path query time
for computing 100 shortest paths of UP-Oracle-A2A are 480s
~ 7 min and 0.05s, while the values are 7,100s ~ 2 hours and
5s for EAR-Oracle.

6 CONCLUSION

We propose an efficient (1 + €)-approximate shortest path
oracle on an updated terrain surface called UP-Oracle, which
has state-of-the-art performance in terms of the oracle up-
date time, output size, and shortest path query time com-
pared with the best-known oracle on terrain surfaces. In
future work, it is of interest to explore new pruning steps in
UP-Oracle to further reduce the oracle update time (e.g., it
may be possible to reduce the likelihood of using algorithm
SSAD when updating UP-Oracle by reducing the disk radius
in the non-updated terrain shortest path intact property).

ACKNOWLEDGMENTS

The research of Yinzhao Yan and Raymond Chi-Wing Wong
is supported by GZSTI16EG24. The research of Christian
S. Jensen is supported in part by the Innovation Fund
Denmark project DIREC (9142-00001B).

REFERENCES

[1] S.Xing, C. Shahabi, and B. Pan, “Continuous monitoring of nearest
neighbors on land surface,” VLDB, vol. 2, no. 1, pp. 1114-1125,

2009.

[2] “Metaverse,” 2023. [Online]. Available: https://about.facebook.
com/meta

[3] “Google Earth,” 2023. [Online]. Available: https://earth.google.
com/web

[4] K. Deng, H. T. Shen, K. Xu, and X. Lin, “Surface kNN query
processing,” ICDE, pp. 78-78, 2006.

[5] B.Huang, V.]. Wei, R. C.-W. Wong, and B. Tang, “EAR-oracle: on
efficient indexing for distance queries between arbitrary points on
terrain surface,” SIGMOD, vol. 1, no. 1, pp. 1-26, 2023.

[6] M. Kaul, R. C.-W. Wong, and C. S. Jensen, “New lower and upper
bounds for shortest distance queries on terrains,” VLDB, vol. 9,
no. 3, pp. 168-179, 2015.

[7] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen, “Finding
shortest paths on terrains by killing two birds with one stone,”
VLDB, vol. 7, no. 1, pp. 73-84, 2013.

[8] L.LiuandR.C.-W. Wong, “Finding shortest path on land surface,”
SIGMOD, pp. 433-444, 2011.

[9] V.]. Wei, R. C.-W. Wong, C. Long, D. Mount, and H. Samet,
“Proximity queries on terrain surface,” TODS, vol. 47, no. 4, pp.
1-59, 2022.

[10] V.]. Wei, R. C.-W. Wong, C. Long, and D. M. Mount, “Distance
oracle on terrain surface,” SIGMOD, pp. 1211-1226, 2017.

[11] Y. Yan and R. C.-W. Wong, “Path Advisor: a multi-functional
campus map tool for shortest path,” VLDB, vol. 14, no. 12, pp.
2683-2686, 2021.

, “Efficient shortest path queries on 3D weighted terrain

surfaces for moving objects,” MDM, 2024.

(12]

[13] “Moderate mag. 4.1 earthquake - 6.3 km northeast
of Sierre, Valais, Switzerland,” 2023. [Online]. Avail-
able: https://www.volcanodiscovery.com/earthquakes/quake-

info/1451397 /mag4quake-Oct-24-2016-Leukerbad-VS.html

[14] “Turkey-Syria earthquakes 2023,” 2023. [Online]. Available:
https:/ /www.bbc.com/news/topics/cq0zxdd0y39t

[15] K. Pletcher and J. P. Rafferty, “Sichuan earthquake of 2008,”
2023. [Online]. Available: https://www.britannica.com/event/
Sichuan-earthquake-of-2008

https://about.facebook.com/meta
https://about.facebook.com/meta
https://earth.google.com/web
https://earth.google.com/web
https://www.volcanodiscovery.com/earthquakes/quake-info/1451397/mag4quake-Oct-24-2016-Leukerbad-VS.html
https://www.volcanodiscovery.com/earthquakes/quake-info/1451397/mag4quake-Oct-24-2016-Leukerbad-VS.html
https://www.bbc.com/news/topics/cq0zxdd0y39t
https://www.britannica.com/event/Sichuan-earthquake-of-2008
https://www.britannica.com/event/Sichuan-earthquake-of-2008

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

(39]

(40]

[41]

H. Li and Z. Huang, “82 die in Sichuan quake, rescuers
race against time to save lives,” 2022. [Online]. Avail-
able: https://www.chinadailyhk.com/article /289413#82-die-in-
Sichuan-quake-rescuers-race-against-time-to-save-lives

J. E. Nichol, A. Shaker, and M.-S. Wong, “Application of high-
resolution stereo satellite images to detailed landslide hazard
assessment,” Geomorphology, vol. 76, no. 1-2, pp. 68-75, 2006.

A. Annis, F. Nardi, A. Petroselli, C. Apollonio, E. Arcangeletti,
F. Tauro, C. Belli, R. Bianconi, and S. Grimaldi, “UAV-DEMs for
small-scale flood hazard mapping,” Water, vol. 12, no. 6, p. 1717,
2020.

T. Kawamura, J. E Clinton, G. Zenhdusern, S. Ceylan, A. C.
Horleston, N. L. Dahmen, C. Duran, D. Kim, M. Plasman, S. C.
Stédhler et al., “S1222a—the largest marsquake detected by insight,”
Geophysical research letters, vol. 50, no. 5, p. €2022GL101543, 2023.
“NASA Mars exploration,” 2023. [Online]. Available: https:
/ /mars.nasa.gov

N. McCarthy, “Exploring the red planet is a costly
undertaking,” 2021. [Online]. Available: https://www.statista.
com/chart/24232 /life-cycle-costs-of-mars-missions/

S. Pan and M. Li, “Construction of earthquake rescue model
based on hierarchical voronoi diagram,” Mathematical problems in
engineering, vol. 2020, pp. 1-13, 2020.

S. Kapoor, “Efficient computation of geodesic shortest paths,” in
ACM symposium on theory of computing, 1999, pp. 770-779.

V.]. Wei, R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet, “On
efficient shortest path computation on terrain surface: A direction-
oriented approach,” TKDE, no. 1, pp. 1-14, 2024.

J. Chen and Y. Han, “Shortest paths on a polyhedron,” in Sympo-
sium on computational geometry, 1990, p. 360-369.

S.-Q. Xin and G.-J. Wang, “Improving Chen and Han’s algorithm
on the discrete geodesic problem,” ACM Transactions on graphics,
vol. 28, no. 4, pp. 1-8, 2009.

C. Shahabi, L.-A. Tang, and S. Xing, “Indexing land surface for
efficient kNN query,” VLDB, vol. 1, no. 1, pp. 1020-1031, 2008.

Y. Yan and R. C.-W. Wong, “Proximity queries on point clouds
using rapid construction path oracle,” SIGMOD, vol. 2, no. 1, pp.
1-26, 2024.

Y. Hong and]. Liang, “Excavators used to dig out rescue
path on cliff in earthquake-hit Luding of sw China’s
Sichuan,” People’s daily misc, 2022. [Online]. Available: http:
/ /en.people.cn/n3/2022/0909/c90000-10145381.html

“Mars 2020 mission perseverance rover brains,” 2023. [Online].
Available: https://mars.nasa.gov/mars2020/spacecraft/rover/
brains/

“NASA’s self-driving perseverance mars rover ‘takes the wheel’,”
2021. [Online]. Available: https://www.nasa.gov/solar-system/
nasas-self-driving-perseverance-mars-rover-takes-the-wheel /
“Mars 2020 mission perseverance rover communications,” 2023.
[Online]. Available: https://www.statista.com/chart/24232/life-
cycle-costs-of-mars-missions/

J. A. Crisp, M. Adler, J. R. Matijevic, S. W. Squyres, R. E. Arvidson,
and D. M. Kass, “Mars exploration rover mission,” Journal of
geophysical research: planets, vol. 108, no. E12, 2003.

D. Peleg and J. D. Ullman, “An optimal synchronizer for the hy-
percube,” in ACM Symposium on principles of distributed computing,
1987, pp. 77-85.

H. Shpungin and M. Segal, “Near-optimal multicriteria spanner
constructions in wireless ad hoc networks,” IEEE/ACM Transac-
tions on networking, vol. 18, no. 6, pp. 1963-1976, 2010.

I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares, “On sparse
spanners of weighted graphs,” Discrete & computational geometry,
vol. 9, no. 1, pp. 81-100, 1993.

B. Padlewska, “Connected spaces,” Formalized mathematics, vol. 1,
no. 1, pp. 239-244, 1990.

Y. Yan, R. C-W. Wong, and C. S. Jensen, “An efficiently
updatable path oracle for terrain surfaces (technical report),”
2023. [Online]. Available: https://github.com/yanyinzhao/
UpdatedStructureTerrainCode /blob /master / TechnicalReport.pdf
M. Fan, H. Qiao, and B. Zhang, “Intrinsic dimension estimation of
manifolds by incising balls,” Pattern recognition, vol. 42, no. 5, pp.
780-787, 2009.

G. Das and G. Narasimhan, “A fast algorithm for constructing
sparse Euclidean spanners,” in Symposium on computational geome-
try, 1994, pp. 132-139.

E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[42]

[43]

[44]
[45]

[46]

[47]

(48]

14

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms. MIT press, 2022.

H. N. Djidjev and C. Sommer, “Approximate distance queries
for weighted polyhedral surfaces,” in Proceedings of the European
Symposium on Algorithms, 2011, pp. 579-590.

“Blender,” 2023. [Online]. Available: https:/ /www.blender.org
“Mar 11, 2011: Tohoku earthquake and Tsunami,” 2023.
[Online]. Available: https://education.nationalgeographic.org/
resource/tohoku-earthquake-and-tsunami/

“Gujarat earthquake, 2001,” 2023. [Online]. Available: https://
www.actionaidindia.org/emergency / gujarat-earthquake-2001/
“2018 Anchorage earthquake,” 2023. [Online].
Available: https://www.usgs.gov/news/featured-story/2018-
anchorage-earthquake

R. Pallardy, “2010 Haiti earthquake,” 2023. [Online]. Available:
https:/ /www.britannica.com/event/2010-Haiti-earthquake

Yinzhao Yan is a PhD candidate in Computer
Science and Engineering of The Hong Kong
University of Science and Technology super-
vised by Prof. Raymond Chi-Wing Wong. He ob-
tained BSc degree in Computer Science in Hong
Kong Baptist University in 2020. He published
several papers as the first author in SIGMOD,
VLDB, and MDM. He received MDM 2024 Best
Paper Award. His research interest is spatial
databases.

Raymond Chi-Wing Wong is a Professor in
Computer Science and Engineering of The Hong
Kong University of Science and Technology. He
is currently the associate head of Department of
Computer Science and Engineering and the di-
rector of Undergraduate Research Opportunities
Program. He received the BSc, MPhil, and PhD
degrees in Computer Science and Engineering
in the Chinese University of Hong Kong in 2002,
2004, and 2008, respectively. He published over
160 papers (e.g., SIGMOD, VLDB, ICDE, TODS,

TKDE, and VLDB journal). His research interests include database and
data mining.

Christian S. Jensen is a Professor in Computer
Science of Aalborg University, Denmark. He is
an ACM and an IEEE fellow and a member
of the Academia Europaea, the Royal Danish
Academy of Sciences and Letters, and the Dan-
ish Academy of Technical Sciences. He has re-
ceived several national and international awards
for his research, most recently the 2019 IEEE
TCDE Impact Award and the 2022 ACM SIG-
MOD Contributions Award. His research con-
cerns data analytics and management with focus

on temporal and spatio-temporal data.

https://www.chinadailyhk.com/article/289413#82-die-in-Sichuan-quake-rescuers-race-against-time-to-save-lives
https://www.chinadailyhk.com/article/289413#82-die-in-Sichuan-quake-rescuers-race-against-time-to-save-lives
https://mars.nasa.gov
https://mars.nasa.gov
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
http://en.people.cn/n3/2022/0909/c90000-10145381.html
http://en.people.cn/n3/2022/0909/c90000-10145381.html
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://www.nasa.gov/solar-system/nasas-self-driving-perseverance-mars-rover-takes-the-wheel/
https://www.nasa.gov/solar-system/nasas-self-driving-perseverance-mars-rover-takes-the-wheel/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://github.com/yanyinzhao/UpdatedStructureTerrainCode/blob/master/TechnicalReport.pdf
https://github.com/yanyinzhao/UpdatedStructureTerrainCode/blob/master/TechnicalReport.pdf
https://www.blender.org
https://education.nationalgeographic.org/resource/tohoku-earthquake-and-tsunami/
https://education.nationalgeographic.org/resource/tohoku-earthquake-and-tsunami/
https://www.actionaidindia.org/emergency/gujarat-earthquake-2001/
https://www.actionaidindia.org/emergency/gujarat-earthquake-2001/
https://www.usgs.gov/news/featured-story/2018-anchorage-earthquake
https://www.usgs.gov/news/featured-story/2018-anchorage-earthquake
https://www.britannica.com/event/2010-Haiti-earthquake

	Introduction
	Motivation
	Challenges
	Path Oracle on Updated Terrain Surfaces
	Contributions and Organization

	Preliminary
	Notation and Definitions
	Updated Terrain Surfaces Problem
	Non-updated Terrain Shortest Path Intact Property

	Related Work
	On-the-fly Algorithms on Terrain Surfaces
	Oracle-based Algorithms on Terrain Surfaces
	Sub-graph Generation Algorithms

	Methodology
	Overview of UP-Oracle
	Update Phase: Update Exact Shortest Path Step
	Update Phase: Generate Sub-graph Step
	Handling Subsequent Changes
	Adaption to Multi-layer Structure (UP-Oracle-MuLa)
	Adaption to the A2A Query (UP-Oracle-A2A)
	Theoretical Analysis

	Empirical Study
	Experimental Setup
	Experimental Results

	Conclusion
	References
	Biographies
	Yinzhao Yan
	Raymond Chi-Wing Wong
	Christian S. Jensen

