
Eficient Path Oracles for Proximityueries on Point Clouds

YINZHAO YAN, Department of Computer Science and Engineering, The Hong Kong University of Science

and Technology, Hong Kong, Hong Kong

RAYMOND CHI-WING WONG, Department of Computer Science and Engineering, The Hong Kong

University of Science and Technology, Hong Kong, Hong Kong

The prevalence of computer graphics technology boosts the development of point clouds, which ofer advantages over

Triangular Irregular Networks, i.e., TIN s, in proximity queries. All existing on-the-ly shortest path query algorithms and

oracles on a TIN are expensive, and no algorithms can answer shortest path queries on a point cloud directly. Thus, we

propose two types of eicient shortest path oracles on a point cloud. They answer the shortest path query between (1) a

pair of Points-Of-Interests (POIs), and (2) any point and a POI, respectively. We propose four adaptations of them to answer

the query between any point and a POI (or any point if no POIs are given). We also propose two eicient proximity query

algorithms using these oracles. Our two oracles and their proximity query algorithms outperform the best-known adapted

oracle by 12 to 42,000 times in terms of the oracle construction time, oracle size and proximity query time, respectively1.

CCS Concepts: · Information systems→ Proximity search.

Additional Key Words and Phrases: proximity queries; spatial database; point clouds

1 Introduction

Conducting proximity queries on a 3D surface is a topic of widespread interest in both academia and industry [23,
49]. In academia, proximity queries (i.e., shortest path queries [16, 27, 28, 30, 45ś47, 51ś53, 55, 56, 60, 61], k-Nearest
Neighbor (kNN) queries [19, 21, 41, 46, 49, 55] and range queries [37, 55, 62]) is a prevalent database research topic.
In industry, Google Earth [5] and Cyberpunk 2077 [2] utilize the shortest path passing on a 3D surface (such as
Earth) for route planning.
Point cloud and TIN : There are diferent representations of a 3D surface, including a point cloud and a

Triangular Irregular Network (TIN). Figure 1 (a) is a 3D surface of Mount Rainier [33] (a national park in the USA)
in an area of 20km × 20km. (1) A point cloud is represented by a set of 3D points. Figure 1 (b) is the point cloud of
this surface. Given a point cloud, we create a point cloud graph in Figure 1 (c). Its vertices consist of the points
in the point cloud. Its edges consist of a set of edges between each vertex and its 8 neighbor vertices in the 2D
plane. Each edge’s weight is set to the Euclidean distance between its two vertices. (2) A TIN contains a set of
triangular faces. Each face consists of three edges connecting at three vertices. Figure 1 (d) is a TIN of this surface.
We focus on three paths. (1) The blue path passing on a point cloud (graph) in Figures 1 (b & c). (2) The blue
surface path [28] passing on (the faces of) a TIN in Figure 1 (d). (3) The purple dashed network path [28] passing
on (the edges of) a TIN in Figure 1 (d).

1Code available at: https://github.com/yanyinzhao/PointCloudOracleCode

Authors’ Contact Information: Yinzhao Yan, Department of Computer Science and Engineering, The Hong Kong University of Science

and Technology, Hong Kong, Hong Kong; e-mail: yyanas@cse.ust.hk; Raymond Chi-Wing Wong, Department of Computer Science and

Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong; e-mail: raywong@cse.ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-4644/2025/10-ART

https://doi.org/10.1145/3770577

ACM Trans. Datab. Syst.

https://orcid.org/0000-0001-6261-1569
https://orcid.org/0000-0001-7045-6503
https://github.com/yanyinzhao/PointCloudOracleCode
https://orcid.org/0000-0001-6261-1569
https://orcid.org/0000-0001-7045-6503
https://doi.org/10.1145/3770577
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3770577&domain=pdf&date_stamp=2025-10-02

2 • Y. Yan and R. Chi-Wing Wong

b

cd

a

cd

a

cd

a

(a) (b) (c)

cd

a

(d)

Fig. 1. (a) A 3D surface, (b) paths passing on a point

cloud, (c) a point cloud graph and (d) blue surface

and purple network paths passing on a TIN

Table 1. P2P, A2P, A2A, AR2P and AR2AR queries

Query
Source/

query object

Destination/

target objects
3D surface

P2P POI POI(s) point cloud/TIN

A2P any point� POI(s) point cloud

A2A any point� any point� point cloud

AR2P arbitrary point� POI(s) TIN

AR2AR arbitrary point� arbitrary point� TIN

Remark: �on (a set of points of) a point cloud in discrete

space, and �on (the faces of) a TIN in continuous space.

1.1 Motivation

1.1.1 Advantages of point cloud. Point clouds have four advantages compared with TIN s.
(1) More direct access to point cloud data. We can obtain a point cloud using an iPhone LiDAR scanner [43] or a

satellite [59] in 3s for a region of 1km2. But, a TIN is usually converted from a point cloud via triangulation [13],
where all vertices of faces are points in the point cloud.

(2) Lower hard disk usage of a point cloud. We only store point information of a point cloud, but store vertex,
edge and face information of a TIN.

(3) Smaller shortest path query time on a point cloud. Calculating the shortest path passing on a point cloud is
faster than calculating the shortest surface path passing on a TIN. Since the former path only passes on the edges
of a point cloud graph, but the latter path passes on the faces of a TIN (the query region is larger than a point
cloud graph). Calculating the shortest path passing on a point cloud has a similar time of calculating the shortest
network path passing on a TIN.

(4) Small distance error of the shortest path passing on a point cloud. In Figures 1 (b & d), the blue shortest path
passing on a point cloud is similar to the blue shortest surface path passing on a TIN (since each point connects
with 8 neighbor points). But, in Figure 1 (d), the blue shortest surface path and purple dashed shortest network
path passing on a TIN difer signiicantly (since each vertex only connects with 6 neighbor vertices).

1.1.2 P2P, A2P and A2A queries. We study the shortest path query between an object � and an object � , or
the kNN and range queries among a query object � and target objects � on a point cloud. There are three types
of queries. Consider a set of pre-selected Points-Of-Interests (POIs) on a point cloud. (1) In the POI-to-POI (P2P)
query, both � and � are POIs (or a set of POIs). (2) In the Any point-to-POI (A2P) query, � is any point on the
point cloud, and � is a POI (or a set of POIs). � and � can be swapped. (3) In the Any point-to-Any point (A2A)
query, both � and � are any point on the point cloud. The irst three rows in Table 1 illustrate them.

1.1.3 Usage of oracles. It is fast to answer the shortest path query on a point cloud on-the-ly (i.e., path
pre-computation and index are not involved). But, we can pre-compute and store paths among a set of selected
points in an index, called an oracle (a common term in database community [14, 45, 56, 58, 61, 63]). Then, we can
use it to answer proximity queries more eiciently.

1.1.4 Snowfall example. We performed a snowfall evacuation case study [34] in Mount Rainier [33] to evacuate
tourists to nearby hotels.
(1) P2P query: In Figure 1 (a), we ind shortest paths from a viewing platform (e.g., POI �) to �-nearest hotels

(e.g., POIs � to �) due to hotels’ limited capacity. � and � are the �-nearest hotels to � where � = 2. We ind
shortest paths quickly for life-saving.
(2) A2P query: If visitors can be anywhere with unknown locations before the oracle is constructed, we ind

shortest paths from a visitor to �-nearest hotels. If visitors are at viewing platforms and hotels are not available

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 3

(only tents are available with unknown locations before the oracle is constructed), we ind shortest paths from a
viewing platform to �-tents.

(3) A2A query: We ind shortest paths from a visitor to �-tents. But, if either hotels are available or visitors
are at viewing platforms, the oracle for the A2A query is not suitable due to its large construction time. So, it is
necessary to design an oracle for the A2P query.

1.1.5 Solar storm example. We performed a solar storm evacuation case study [10] for NASA’s Mars 2020
rover. During solar storms, rovers ind shortest escape paths quickly from their current locations (any location)
on Mars to shelters (POIs) to avoid damage. Since the memory size of a rover is 256MB [9], the oracle for the
A2A query is not suitable due to its large size. So, it is necessary to design an oracle for the A2P query.

1.2 Challenges

1.2.1 Non-existence of on-the-fly algorithms. There is no study answering shortest path query on a point
cloud on-the-ly directly. Existing algorithms [39, 42, 57] convert a point cloud to a TIN, and then calculate the
shortest path passing on this TIN, which are very slow. The best-known TIN exact on-the-ly shortest surface
path query algorithm [16, 47] uses a line to connect the source and destination on a 2D TIN unfolded by the 3D
TIN. But, the unfolding technique is complicated. The best-known TIN approximate on-the-ly shortest surface
path query algorithm [27, 52] uses Dijkstra’s algorithm on a graph constructed by TIN ’s vertices and discrete
Steiner points placed on TIN ’s edges. But, the graph has a complicated structure. Our experimental results show
that they need several days for kNN or range queries.

1.2.2 Non-existence of oracles. There is no study answering shortest path query on a point cloud using
oracles directly. The only related studies are oracles [26, 45, 46] on a TIN. We can adapt them to a point cloud
by converting the point cloud to a TIN, and then constructing these oracles on this TIN. But, the best-known
adapted TIN (1) oracle [45, 46] for the P2P query and (2) oracle [26] for both the A2P and A2A queries on a point
cloud have a large oracle construction time. This is because their loose criterion for algorithm earlier termination

drawback. They pre-compute shortest surface paths passing on the TIN from each POI (or point) to other POIs (or
points) using the Single-Source All-Destination (SSAD) algorithm [16, 27, 28, 47, 52], i.e., a Dijkstra’s algorithm [22],
and store paths in a set. Although they provide a criterion to terminate the SSAD algorithm earlier, diferent POIs
(or points) have the same criterion, meaning that it is not tight for some of these POIs (or points). Even after
it has visited most POIs (or points), their earlier termination criterion are still not reached. Our experimental
results show that their oracle construction time is one day.

1.3 Our First-Type Oracle

We propose an eicient shortest path oracle on a point cloud called Rapid Construction path Oracle, i.e., RC-Oracle.
It answers (1 + �)-approximate P2P shortest path queries, where � > 0 is the error parameter. It can signiicantly
reduce the oracle construction time for two reasons. (1) Rapid point cloud on-the-ly shortest path query: When
constructing RC-Oracle, we propose an eicient algorithm Fast on-the-Fly shortest path query, i.e., FastFly, on a

point cloud graph. It is a Dijkstra’s algorithm [22] eiciently calculating the exact shortest path passing on a point
cloud directly. (2) Rapid oracle construction: When constructing RC-Oracle, we use algorithm FastFly, i.e., a SSAD
algorithm, to calculate the shortest path passing on the point cloud from for each POI to other POIs simultaneously.
We set tight earlier termination criterion for diferent POIs. We adapt it to be RC-Oracle-A2P-Small Construction

time (RC-Oracle-A2P-SmCon), RC-Oracle-A2P-Small Query time (RC-Oracle-A2P-SmQue) and RC-Oracle-A2A for

A2P and A2A queries.

ACM Trans. Datab. Syst.

4 • Y. Yan and R. Chi-Wing Wong

1.4 Our Second-Type Oracle

We propose a diferent eicient shortest path oracle on a point cloud called TIght result path Oracle, i.e., TI-Oracle.
It answers (1+ �)-approximate A2P shortest path queries. It can signiicantly reduce the oracle construction time
and oracle size due to the tight shortest paths result. Since when constructing TI-Oracle, we only calculate and
store shortest paths passing on the point cloud among some points close to the given POIs, instead of among all the
points. This saves time and space. We adapt it to be TI-Oracle-A2A for A2A queries.

1.5 Contributions and Organization

1.5.1 Contributions of this journal paper. We summarize our contributions.
(1)We propose algorithm FastFly on a point cloud graph, to eiciently calculate the shortest path passing on

a point cloud directly. Although it is just a Dijkstra’s algorithm, the proposed point cloud graph allows us to
address the research gap of not having studies that ind the shortest path on a point cloud (with many advantages
compared with a TIN) directly. We also propose six oracles (four about RC-Oracle and two about TI-Oracle) to
eiciently answer the P2P, A2P and A2A shortest path queries on a point cloud. We also propose two eicient
proximity query algorithms to answer (1 + �)-approximate kNN and range queries using the irst four and last
two oracles.
(2)We provide theoretical analysis on six oracles’ oracle construction time, oracle size, shortest path query

time and error bound. We also provide theoretical analysis on algorithm FastFly and proximity query algorithms’
query time and error bound.

(3) Our six oracles and their proximity query algorithms outperform the best-known adapted TIN oracles [26,
45, 46] on a point cloud in terms of the oracle construction time, oracle size and proximity (e.g., kNN) query time.
Our experimental results show that for the P2P query on a point cloud with 2.5M points and 500 POIs, these
values are 80s ≈ 1.3 min, 50MB and 12.5s for RC-Oracle, respectively. But, these values are 78,000s ≈ 21.7 hours,
1.5GB and 150s for the best-known adapted TIN oracle [45, 46], respectively. For the A2P query on a point cloud
with 250k points and 500 POIs, these values are 25s, 28MB and 2.2s for TI-Oracle, respectively. But, these values
are 1,050,000s ≈ 12 days, 300GB and 600s ≈ 10 min for the best-known adapted TIN oracle [26], respectively.

1.5.2 Contributions compared to the previous conference paper. This journal paper extends the previous
conference paper [53] by expanding from P2P and A2A queries to P2P, A2P and A2A queries. The previous
paper has (1) algorithm FastFly, (2) RC-Oracle and RC-Oracle-A2A, and (3) their proximity query algorithm. We
summarize our new contributions compared to it.

(1) We propose four new oracles RC-Oracle-A2P-SmCon, RC-Oracle-A2P-SmQue, TI-Oracle and TI-Oracle-A2A,
and the proximity query algorithm for the last two oracles. The irst three oracles for the A2P query perform
better in cases of: (i) fewer proximity queries, (ii) more proximity queries when the density of POIs is high, and
(iii) more proximity queries when the density of POIs is low.

(2) We provide theoretical analysis on the new oracles and new proximity query algorithm.
(3) Our three new oracles for the A2P query outperform the previously proposed best-known oracle RC-

Oracle-A2A [53] in terms of the oracle construction time and oracle size. Their proximity query time (with their
proximity query algorithms) are comparable to RC-Oracle-A2A. Our experimental results show that for the A2P
query on a point cloud with 2.5M points and 500 POIs, the oracle construction time, oracle size and kNN query
time are 250s ≈ 4.1 min, 280MB and 22s for TI-Oracle, respectively. But, these values are 42,000 ≈ 11.6 hours,
100GB and 12.5s for RC-Oracle-A2A, respectively. The oracle construction time of RC-Oracle-A2P-SmCon and
RC-Oracle-A2P-SmQue are 320 times and 158 times better than RC-Oracle-A2A, respectively.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 5

1.5.3 Organization. The remainder of the paper is organized as follows. Section 2 provides the problem
deinition. Section 3 covers the related work. Sections 4 and 5 present RC-Oracle, TI-Oracle, and their adaptations.
Section 6 covers the empirical studies and Section 7 concludes the paper.

2 Problem Definition

2.1 Notation and Definitions

2.1.1 Point cloud. Given a set of points, we let � be a point cloud of these points with size � . The diference
between ła set of pointsž and ła point cloudž is as follows. łA set of pointsž is a normal computer science term
which describes a set containing a number of points. łA point cloudž is a special terminology in the literature
describing the set of points describing a 3D surface or object. Each point � ∈ � has three coordinate values,
denoted by �� , �� and �� . We let �max and �min (resp. �max and �min) be the maximum and minimum � (resp. �)
coordinate value for all points on� . We let �� = �max − �min (resp. �� = �max −�min) be the side length of� along
�-axis (resp. �-axis), and � =max(�� , ��). Figure 2 (a) shows a point cloud � with �� = �� = 4. Given a point �
in � , we deine � (�) to be a set of neighbor points of � , which denotes the closest 8 surrounding points of � in
the 2D plane, i.e., when we project � to the 2D plane, these 2D points match with a regular (equidistant) grid.
In Figure 2 (a), given a green point �, � (�) is denoted as 7 blue points and 1 red point � . Let � be a set of POIs,
which is a subset of � with size �, where � ≤ � .

t

s

Lx

q

(a)

Ly

(b)

t

s
q

(c)

Fig. 2. (a) A point cloud, (b) a

point cloud graph and (c) a TIN

Table 2. Summary of frequent used notations

Notation Meaning

� The point cloud with a set of points

� The number of points of�

� The maximum side length of�

� The set of POI

� The number of vertices of �

� The point cloud graph of�

�� (�, �′) The Euclidean distance between point � and �′

Π
∗ (�, � |�) The exact shortest path passing on� between � and �

|Π∗ (�, � |�) | The distance of Π∗ (�, � |�)
� The error parameter

� The TIN converted from�

Π
∗ (�, � |�) The exact shortest surface path passing on� between � and �

Π� (�, � |�) The shortest network path passing on� between � and �

�′ The number of target objects in kNN or range query

Π� (�, � |�)

The shortest path passing on� between � and � returned by

oracle �, where � ∈ {RC-Oracle, RC-Oracle-A2P-SmCon,

RC-Oracle-A2P-SmQue, RC-Oracle-A2A, TI-Oracle,

TI-Oracle-A2A}

2.1.2 Point cloud graph. We deine � to be a point cloud graph of � . Let �.� and �.� be the set of vertices
and edges of � . Each point in � is denoted by a vertex in �.� . For each point � ∈ � , �.� consists of a set of
edges between � and �′ ∈ � (�). The weight of each edge is set to the Euclidean distance between its two vertices.
Figure 2 (b) shows a point cloud graph. Given a pair of points � and �′ in 3D space, we deine �� (�, �′) to be the
Euclidean distance between � and �′. Given a pair of points � and � on � , let Π∗ (�, � |�) be the exact shortest path
passing on (� of) � between � and � . Figure 2 (a) shows an example of Π∗ (�, � |�) in orange line. We deine | · | to
be the distance of a path (e.g., |Π∗ (�, � |�) | is the distance of Π∗ (�, � |�)).

ACM Trans. Datab. Syst.

6 • Y. Yan and R. Chi-Wing Wong

2.1.3 TIN. Let� be a TIN that contains a set of vertices, edges and (triangular) faces. It is triangulated [13] from
� where all vertices of faces are points in � , i.e., each (internal) point is part of four or more triangles. It is not a
Delaunay triangulation [18]. Figure 2 (c) shows a� . In this igure, given a green vertex �, the neighbor vertices of
� are 6 blue vertices. Given a pair of vertices � and � on� , let Π∗(�, � |�) be the exact shortest surface path passing
on (the faces of) � between � and � . Similarly, let Π� (�, � |�) be the shortest netWork path passing on (the edges
of) � between � and � . Figure 2 (c) shows an example of Π∗ (�, � |�) in blue line and Π� (�, � |�) in pink line.

2.1.4 Proximity queries. (1) In the shortest path query, given a source � and a destination � , we answer the
shortest path between � and � . (2) In the kNN query, given a query object �, a set of �′ target objects� and a user
parameter � , we answer all shortest paths from � to its � nearest target objects. (3) In the range query, given �, �
and a user parameter � , we answer all shortest paths from � to target objects whose distance to it is at most � .

2.1.5 P2P, A2P and A2A queries on point cloud. (1) In the P2P query, the shortest path passing on � from a
source (a POI in �) to a destination (a POI in �) can pass on points in � − � (and also �). (2) In the A2P query,
either the source or destination is any point on � , while the other is a POI in � . Without loss of generality, we let
the source be any point on � and destination be a POI in � . (3) In the A2A query, both the source and destination
are any point on � .
(1) In the P2P query, for kNN and range queries, both query and target objects are POIs in � . (2) In the A2P

query, there are two cases for kNN and range queries. (i) The query object is any point on � , and the target
objects are POIs in � . (ii) The query object is a POI in � , and the target objects are any point on� . In other words,
the A2P query is the same as the P2A query. (3) In the A2A query, for kNN and range queries, both query and
target objects are any point on � .

Consider an area of points on� . (1) If the area is pre-selected that covers a portion of� , then it is equivalent to
the P2P query, since we can regard points in the area as pre-selected POIs. (2) If the area is not pre-selected, then
it is equivalent to the A2P or A2A query, since we can regard points in the area as any point in � . Consider our
snowfall or solar storm evacuation example. If the locations of visitors, tents and rovers are unknown before
the oracle is constructed, i.e., their corresponding area is not pre-selected, we need to build the oracle for the
A2P or A2A query for eicient rescuing. In other words, łany pointž in the A2P or A2A queries is opposite to
łpre-selected POIž in the P2P query, i.e., we do not know the position of the source or destination before the
oracle is constructed.

2.1.6 P2P, AR2P and AR2AR queries on TIN. Apart from the queries on a point cloud� , we also have similar
queries on a TIN � . The P2P query on� is the same as on� . But, since an object may lie on the face of� (i.e., not
just lie on the vertex of �), to adapt the A2P and A2A queries on � to � , we change łany point on (a set of points
of)�ž to łarbitrary point on (the faces of)� ž. łAny point on�ž comes from a discrete space (i.e., a set of a certain
number of points of �), and łarbitrary point on � ž comes from a continuous space (i.e., the faces of �). Then, we
obtain ARbitrary point-to-POI (AR2P) and ARbitrary point-to-ARbitrary point (AR2AR) query on� . They are more
general than the A2P and A2A queries on � since an object may lie on the faces of � . The irst, fourth and ifth
rows in Table 1 illustrate them.

2.1.7 Oracle. An oracle [14, 45, 56, 58, 61, 63] is an index that stores the shortest path passing on � among a
set of selected points. We can use it to answer shortest path queries among all pairs of selected points eiciently.
Table 2 shows a notation table.

2.2 Problem

The problem is to design eicient oracles on a point cloud for answering proximity queries. Given a pair of points
� and � on � , let Π� (�, � |�) be the shortest path between � and � returned by oracle �, where � ∈ {RC-Oracle,

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 7

RC-Oracle-A2P-SmCon, RC-Oracle-A2P-SmQue, RC-Oracle-A2A, TI-Oracle, TI-Oracle-A2A}. The oracle should
satisfy |Π� (�, � |�) | ≤ (1 + �) |Π∗(�, � |�) | for any pair of POIs or points � and � stored in oracle �.

3 Related Work

3.1 On-the-fly Algorithms

There is no study answering shortest path query on a point cloud on-the-ly directly. Existing algorithms [39, 42, 57]
convert a point cloud to a TIN in � (�) time, and then calculate the shortest path passing on this TIN. There are
two types of TIN shortest path query algorithms, i.e., (1) shortest surface path [16, 27, 29, 31, 47, 48, 52] and (2)
shortest network path [28] query algorithms.

3.1.1 TIN on-the-fly shortest surface path query algorithms. There are two more sub-types. (1) Exact
algorithms: Study [31] and study [48] use continuous Dijkstra and checking window algorithm for query both in
� (� 2 log�) time. The best-known TIN exact on-the-ly shortest surface path query algorithm DirectIon-Oriented,
i.e., algorithm DIO [16, 47] uses a line to connect the source and destination on a 2D TIN unfolded by the 3D
TIN. It runs in � (� 2) time. (2) Approximate algorithms: All algorithms [27, 29, 52] use Dijkstra’s algorithm
on a graph constructed by TIN ’s vertices and discrete Steiner points placed on TIN ’s edges. The best-known
TIN (1 + �)-approximate on-the-ly shortest surface path query algorithm Eicient Steiner Point, i.e., algorithm

ESP [27, 52] runs in � (�� log(��)). Note that � =
�max

��min

√
1−cos�

, �max (resp. �min) is the length of the longest (resp.

shortest) edge of the TIN, and � is the minimum inner angle of any face in the TIN.

3.1.2 TIN on-the-fly shortest network path query algorithm. Since the shortest network path does not cross
the faces of a TIN, it is an approximate path. The best-known TIN approximate on-the-ly shortest network path
query algorithm DIJstra, i.e., algorithm DIJ [28] uses Dijkstra’s algorithm on TIN ’s edge. It runs in � (� log�)
time.
Adaptations: (1) Given a point cloud, we adapt algorithms DIO [16, 47], ESP [27, 52] and DIJ [28] to be

algorithms DIO-Adapt, ESP-Adapt and DIJ-Adapt. Speciically, we irst convert the point cloud to a TIN, and
then compute the shortest path passing on the TIN. (2) Given a point cloud without data conversion, algorithm
DIO cannot be directly adapted to the point cloud, because there is no face to be unfolded in a point cloud. But,
algorithms ESP and DIJ can be adapted to the point cloud (if we let the path pass on the point cloud graph), and
they become algorithm FastFly.
Drawback: These algorithms are time-consuming. Our experimental results show algorithms DIO-Adapt,

ESP-Adapt and DIJ-Adapt irst need to convert a point cloud with 2.5M points to a TIN in 21s. Then they perform
the kNN query for all 500 objects on this TIN in 290,000s ≈ 3.4 days, 161,000s ≈ 1.9 days and 3,990s ≈ 1.1 hours,
respectively. Performing the same query for algorithm FastFly on the point cloud needs 4,000s ≈ 1.1 hours.

3.2 Oracles for the Shortest Path uery

There is no study answering shortest path query on a point cloud using oracles directly. The only related studies are
oracles on a TIN. Speciically, Space Eicient Oracle (SE-Oracle) [45, 46] and Updatable Path Oracle (UP-Oracle) [56]
answer P2P shortest path queries on a TIN using an oracle. Eiciently ARbitrary points-to-arbitrary points Oracle

(EAR-Oracle) [26] answers AR2AR shortest path queries on a TIN using an oracle. They store TIN shortest surface
paths. By performing a linear scan using the shortest path query results, they can answer other proximity queries.
Adaptations: (1) Given a point cloud, we adapt SE-Oracle [45, 46], UP-Oracle [56] and EAR-Oracle [26] to be

SE-Oracle-Adapt, UP-Oracle-Adapt and EAR-Oracle-Adapt. Speciically, we convert the point cloud to a TIN, and
then construct these oracles on the TIN. (2) Given a point cloud without data conversion, SE-Oracle, UP-Oracle
and EAR-Oracle can be adapted to the point cloud using algorithm FastFly (if we let the path pass on the point

ACM Trans. Datab. Syst.

8 • Y. Yan and R. Chi-Wing Wong

cloud graph). They only difer in the oracle construction compared with our oracles. But, their oracle construction
time remains large due to the reasons to be discussed in their drawbacks.

3.2.1 SE-Oracle-Adapt. It uses a compressed partition tree [45, 46] and well-separated node pair sets [15] to store
the (1 + �)-approximate P2P shortest surface paths passing on the converted TIN. Its oracle construction time,

oracle size and shortest path query time are� (�� 2 + �ℎ
�2�
+ �ℎ log�),� (�ℎ

�2�
) and� (ℎ2), respectively. Note that ℎ

is the compressed partition tree’s height and � ∈ [1.5, 2] is a constant. It is the best-known adapted TIN oracle
for the P2P query on a point cloud.

3.2.2 UP-Oracle-Adapt. It builds an updatable oracle on the converted TIN. It uses a complete graph to store
pairwise P2P shortest surface paths passing on the converted TIN before updates. If the TIN updates, it updates
the complete graph for afected regions. Its oracle construction time, oracle size and shortest path query time are
� (�� 2 + �2), � (�2) and � (1), respectively.

3.2.3 EAR-Oracle-Adapt. Similar to SE-Oracle-Adapt, it also uses well-separated node pair sets. But, it adapts
SE-Oracle-Adapt from the P2P query on a point cloud to the A2P and A2A queries on a point cloud. Speciically,
it places Steiner points on the faces of the converted TIN, and uses highway nodes as POIs in well-separated node

pair sets construction. Its oracle construction time, oracle size and shortest path query time are� (���� 2 + � 2

�2�
+

�ℎ
�2�
+�ℎ log�),� (���

�
+ �ℎ

�2�
) and� (�� log(��)), respectively. Note that � is the number of highway nodes in a

minimum square, � is the square root of the number of boxes, and� is the number of Steiner points per face. It is
the best-known adapted TIN oracle for the A2P and A2A queries on a point cloud.

Drawbacks: (1) SE-Oracle-Adapt’s oracle construction time is large due to the loose criterion for algorithm earlier

termination. For POIs in the same level of the compressed partition tree, they have the same earlier termination
criteria of using the SSAD algorithm, meaning that it is not tight for some of these POIs. (2) UP-Oracle-Adapt
does not have any pruning technique during oracle construction, so it performs worse than SE-Oracle-Adapt

in terms of the oracle construction time. (3) EAR-Oracle-Adapt also has the loose criterion for algorithm earlier

termination drawback. Our experimental results show that for the P2P query on a point cloud with 2.5M points
and 500 POIs, the oracle construction time of SE-Oracle-Adapt, SE-Oracle-Adapt and RC-Oracle are 78,000s ≈ 21.7
hours, 160,000s ≈ 1.8 days and 80s ≈ 1.3 min, respectively. For the A2P query on a point cloud with 250k points
and 500 POIs, the oracle construction time of EAR-Oracle-Adapt and TI-Oracle are 1,050,000s ≈ 12 days and 25s,
respectively.

3.3 Oracles for Other Proximity ueries

There is no study answering proximity queries on a point cloud using oracles directly. The only related studies are
oracles on a TIN. Speciically, studies [20, 21] use a multi-resolution terrain model to answer AR2P kNN queries
on a TIN in � (� 2) time. SUrface Oracle (SU-Oracle) [41] uses a surface oracle to answer AR2P kNN queries on a

TIN in � (� log2 �) time. We can adapt SU-Oracle to be SU-Oracle-Adapt on a point cloud in a similar way to
SE-Oracle-Adapt. SU-Oracle-Adapt is the best-known adapted TIN oracle to directly answer kNN queries. But,
studies [45, 46] show its kNN query time is up to 5 times larger than that of using SE-Oracle-Adapt with a linear
scan of the shortest path query result. This is because SU-Oracle-Adapt only stores the irst nearest POI of the
given query point. It still needs to use on-the-ly algorithm to ind other �-nearest POIs (� > 1), such results are
not stored in the oracle. In addition, study [49] builds an oracle to answer the dynamic version of the kNN query,
and study [50] builds an oracle to answer the reverse nearest neighbor query, but they are not our main focus.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 9

3.4 Comparisons

We compare diferent algorithms that support the shortest path query on a point cloud in Table 3. When
constructing RC-Oracle, we have tight earlier termination criteria for diferent POIs when using algorithm FastFly.
We denote the naive version of our oracle as RC-Oracle-Naive if no earlier termination criterion is used. Our
oracles outperform other baselines.

Table 3. Comparison of algorithms (support the shortest path query) on a point cloud

Algorithm Oracle construction time Oracle size Shortest path query time Error Query type

Oracle-based algorithm

SE-Oracle-Adapt [45, 46]
� (�� 2 + �ℎ

�2�

+�ℎ log�)
Large � (�ℎ

�2�
) Medium � (ℎ2) Small Small P2P

UP-Oracle-Adapt [56] � (�� 2 + �2) Large � (�2) Large � (1) Small Small P2P

EAR-Oracle-Adapt [26]
� (���� 2 + � 2

�2�

+ �ℎ

�2�
+ �ℎ log�)

Large
� (���

�

+ �ℎ

�2�
) Large � (�� log(��)) Medium Small P2P, A2P, A2A

RC-Oracle-Naive � (�� log� + �2) Medium � (�2) Large � (1) Small Small P2P

RC-Oracle � (� log�
�

+ � log�) Small � (�

�
) Small � (1) Small Small P2P

RC-Oracle-A2P-SmCon � (� log�
�

+ � log�) Small � (�

�
) Small � (� log�) Medium Small P2P, A2P

RC-Oracle-A2P-SmQue � (� log�
�

+ � log�) Small � (�

�
) Medium � (1) Small Small P2P, A2P

RC-Oracle-A2A � (� log�
�

) Small � (�

�
) Medium � (1) Small Small P2P, A2P, A2A

TI-Oracle
� (� log�

�
+ ��

+� log�) Small � (�

�
) Medium � (1) Small Small P2P, A2P

TI-Oracle-A2A
� (� log�

�
+ �

√
�

+
√
� log

√
�)

Small � (�

�
) Medium � (1) Small Small P2P, A2P, A2A

On-the-ly algorithm

DIO-Adapt [16, 47] - N/A - N/A � (� 2) Large Small P2P, A2P, A2A
ESP-Adapt [27, 52] - N/A - N/A � (�� log(��)) Large Small P2P, A2P, A2A
DIJ-Adapt [28] - N/A - N/A � (� log�) Medium Medium P2P, A2P, A2A
FastFly - N/A - N/A � (� log�) Medium No error P2P, A2P, A2A

Remark: � << � . ℎ is the compressed partition tree’s height. � is the largest capacity dimension [45, 46]. �

is the number of highway nodes in a minimum square. � is the square root of the number of boxes,� is the

number of Steiner points per face. � =
�max

��min

√
1−cos�

. � is the minimum inner angle of any face in � , �max (resp.

�min) is the length of the longest (resp. shortest) edge of � .

4 RC-Oracle and Its Adaptations

We illustrate RC-Oracle. In Figure 3 (a), we have a point cloud � , a set of POIs � and an error parameter � . In
Figures 3 (b) - (e), we construct RC-Oracle by calculating shortest paths among these POIs. In Figure 3 (f), we
answer the shortest path query between two POIs using RC-Oracle.

4.1 Overview of RC-Oracle and Its Adaptations

We introduce the two components and two phases.

4.1.1 Components of RC-Oracle and Its Adaptations. There are two components. Both of them are hash
tables [17] that store key-value pairs. We use RC-Oracle as an example to illustrate.

(1) The path map table�path: Each key-value pair stores a pair of endpoints � and � , as a key ⟨�, �⟩, and the
corresponding exact shortest path Π

∗ (�, � |�) passing on� , as a value. The endpoint is a POI in � or any point on
� , depending on the oracle P2P, A2P or A2A query types. Given a key, a hash table returns the value in � (1)
time, and this applies to all hash tables in this paper. In Figure 3 (d), there are 7 exact shortest paths passing on
� , and they are stored in�path in Figure 3 (e). For the exact shortest paths passing on � between � and � ,�path

stores ⟨�, �⟩ as a key and Π
∗ (�, � |�) as a value.

ACM Trans. Datab. Syst.

10 • Y. Yan and R. Chi-Wing Wong

a
b

c

d
e

Key Value

⟨a, b⟩ Π∗(a, b|C)

⟨a, c⟩ Π∗(a, c|C)

⟨a, d⟩ Π∗(a, d|C)

⟨a, e⟩ Π∗(a, e|C)

⟨b, c⟩ Π∗(b, c|C)

… …

MpathKey Value

b a

d c Mend

Construction phase
Shortest path

query phase

(a) (b) (c) (d) (e) (f)

a
b

c

d
e

a
b

c

d
e

x

y

a
b

c

d
e

a
b

c

d
e

Fig. 3. RC-Oracle framework details

(2) The endpoint map table�end: Each key-value pair stores an endpoint � as a key, and another endpoint �
as a value. � is the endpoint that we do not store all the exact shortest paths passing on � in�path with � as a
source. � is the endpoint close to �, where we concatenate Π∗ (�, � |�) and the exact shortest paths passing on �
with � as a source, to approximate shortest paths passing on � with � as a source. In Figure 3 (d), � is close to �,
we concatenate Π∗ (�, � |�) and the exact shortest paths passing on � with � as a source, to approximate shortest
paths passing on � with � as a source. So, we store � as a key, and � as a value in�end in Figure 3 (e).

4.1.2 Phases of RC-Oracle and Its Adaptations. There are two phases.
(1) RC-Oracle (see Figures 3 and 4): (i) In the construction phase, given � , � and � , we pre-compute the exact

shortest paths passing on � between some selected pairs of POIs. We store the calculated paths in �path, and
store the non-selected POIs and their corresponding selected POIs in�end. (ii) In the shortest path query phase,
given a pair of POIs in � ,�path and�end, we answer the path results between this pair of POIs eiciently.

Pair of POIs s and t in
P, Mpath andMend

Shortest pathΠRC-Oracle (s , t|C)

Construction phase

Shortest path query phase

Point cloud C, set of POIs P
and error parameter � Path

calculation

Path query

Path map table Mpath and
endpoint map table Mend

Fig. 4. RC-Oracle framework overview

(2) RC-Oracle-A2P-SmCon: (i) In the construction phase, given� , � and � , the procedure is the same as RC-Oracle.
(ii) In the shortest path query phase (see Figures 5 and 6), given any point (e.g., �) on � and a POI in � , we
eiciently compute the exact shortest paths passing on � between this point and some selected POIs. We store
the calculated paths in�path, and store this point and its corresponding selected POIs in�end. Then, given�path

and�end, we return the path results between this point and this POI.
(3) RC-Oracle-A2P-SmQue: (i) In the construction phase, given� , � and � , the procedure is similar to RC-Oracle.

The only diference is that the destinations are not POIs in � , but all points on � . (ii) In the shortest path query
phase, given any point on � and a POI in � , we answer the path results between this point and POI eiciently.
(4) RC-Oracle-A2A: (i) In the construction phase, given � and � , the procedure is similar to RC-Oracle. The

only diference is that no POI is given as input, we need to create POIs that have the same coordinate values as
all points on � . (ii) In the shortest path query phase, given any pair of points on � , we answer the path results
between this pair of points eiciently.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 11

Key Value

… …

⟨a, e⟩ Π∗(a, e|C)

… …

⟨a, f ⟩ Π∗(a, f |C)

⟨b, f ⟩ Π∗(b, f |C)

⟨c, f ⟩ Π∗(c, f |C)

⟨d, f ⟩ Π∗(d, f |C) Mpath

Key Value

b a

d c

f a

Mend

(a) (b) (c)

a
b

c

d

e

f

a
b

c

d

e

f

a
b

c

d

e

f

(d)

Fig. 5. RC-Oracle-A2P-SmCon shortest path query phase details

C, P, any point s on C and a
POI t in P, Mpath Mend and �

Shortest path ΠRC-

Oracle-A2P-SmCon (s , t|C)

Shortest path query phase

Path query

Path calculation

Updated Mpath andMend

Fig. 6. RC-Oracle-A2P-SmCon shortest path query phase overview

4.2 RC-Oracle and Its Proximity uery Algorithms

4.2.1 Key Idea of RC-Oracle. We introduce the key idea of the small oracle construction time, small oracle
size and small shortest path query time of RC-Oracle as follows.

(1) Small oracle construction time: We give the reason why RC-Oracle has a small oracle construction time.
(i) Rapid point cloud on-the-ly shortest path query by algorithm FastFly: When constructing RC-Oracle, given �

and a pair of POIs � and � on � , we use algorithm FastFly on a point cloud graph of � between � and � . It is a
Dijkstra’s algorithm [22] calculating the exact shortest path passing on � directly. Figure 7 (a) shows the shortest
path passing on a point cloud, and Figure 7 (b) (resp. Figure 7 (c)) shows the shortest surface (resp. network)
path passing on a TIN. The paths in Figures 7 (a) and (b) are similar, but calculating the former path is much
faster than the latter path. The path in Figure 7 (c) has a larger error than the path in Figure 7 (a). Thus, we use
algorithm FastFly for constructing RC-Oracle.

(a) (b)

s

t

s

t

s

t

(c)

Fig. 7. (a) The shortest path passing on a point cloud, the shortest

(b) surface and (c) network path passing on a TIN

a
b

c

d

e

D

Fig. 8. SE-Oracle-Adapt

(ii) Rapid oracle construction: When constructing RC-Oracle, we regard each POI as a source and use algorithm
FastFly, i.e., a SSAD algorithm, for � times for oracle construction. We set a tight earlier termination criteria for
each POI to terminate the SSAD algorithm earlier for time-saving. There are two versions of a SSAD algorithm.

ACM Trans. Datab. Syst.

12 • Y. Yan and R. Chi-Wing Wong

(a) Given a source POI and a set of destination POIs, the SSAD algorithm can terminate earlier if it has visited
all destination POIs. (b) Given a source POI and a termination distance (denoted by �), the SSAD algorithm can
terminate earlier if the searching distance from the source POI is larger than � . We use the irst version. For
each POI, we consider more geometry information of the point cloud (e.g., Euclidean distances and previously
calculated shortest distances). Then, we can set tight earlier termination criteria to calculate the corresponding
destination POIs. This ensures that the number of destination POIs is minimized, and these destination POIs are
closer to the source POI compared with other POIs.
We use an example for illustration. In Figure 3 (a), we have a set of POIs �, �, �, �, � . In Figures 3 (b) - (d), we

process these POIs based on their�-coordinate, i.e., we process them in the order of �, �, �, �, � . In Figure 3 (b), for �,
we use the SSAD algorithm (i.e., FastFly) to calculate shortest paths passing on� from � to all other POIs. We store
the paths in�path. In Figure 3 (c), for �, if � is close to �, and if � is far away from � , i.e., 2

�
· |Π∗ (�, � |�) | < �� (�, �),

then we can use Π∗ (�, � |�) and Π
∗(�, � |�) to approximate Π∗ (�, � |�). The irst term łif � is close to �ž is judged

using the previously calculated |Π∗ (�, � |�) |. The second term łif � is far away from �ž is judged using the
Euclidean distance �� (�, �). The case is similar to � by changing � to � . Thus, we just need to use the SSAD
algorithm with � as a source, and terminate earlier when it has visited � . We store the path in�path, and � as key
and � as value in�end. In Figure 3 (d), for � , we repeat the process as for �. We store the paths in�path. Similarly,
for � , we use |Π∗(�, � |�) | and �� (�, �) to determine whether we can terminate the SSAD algorithm earlier with �
as a source. We found that there is even no need to use the SSAD algorithm with � as the source. For diferent
POIs � and � , we use customized termination criteria to calculate a tight and diferent set of destination POIs for
time-saving. The criteria is |Π∗ (�, � |�) | and �� (�, �) for �, and is |Π∗ (�, � |�) | and �� (�, �) for � . We store � as key
and � as value in�end. In Figure 3 (e), we have�path and�end.
However, in SE-Oracle-Adapt, it has the loose criterion for algorithm earlier termination drawback. It irst

constructs the compressed partition tree. Then, it pre-computes the shortest surface paths passing on� using the
SSAD algorithm (i.e., DIO-Adapt) with each POI as a source for � times, to construct the well-separated node pair
sets. It uses the second version of the SSAD algorithm and sets termination distance � =

8�
�
+ 10� , where � is the

radius of the source POI in the compressed partition tree. Given two POIs � and � in the same level of the tree,
their termination distances are the same (suppose that the value is �1). However, for � , it is enough to terminate
the SSAD algorithm when the searching distance from � is larger than �2, where �2 < �1. This results in a large
oracle construction time. In Figure 8, when � is processed, suppose that � and � are in the same level of the tree,
and they use the same termination criteria to get the same termination distance � . Since |Π∗(�, � |�) | < � , for
� , it cannot terminate the SSAD algorithm earlier until � is visited, which means that its termination criteria is
loose. The two versions of the SSAD algorithm have similar ideas, we achieve a small oracle construction time
mainly by using tight and customized termination criteria for diferent POIs.
(2) Small oracle size: We introduce the reason why RC-Oracle has a small oracle size. We only store a small

number of paths in RC-Oracle, i.e., we do not store the paths between any pair of POIs. In Figure 3 (d), for a pair of
POIs � and � , we use Π∗ (�, � |�) and Π

∗ (�, � |�) to approximate Π∗ (�, � |�). We will not store Π∗(�, � |�) in�path

for memory saving.
(3) Small shortest path query time: We use an example to introduce the reason why RC-Oracle has a small

shortest path query time. In Figure 3 (f), we query the shortest path passing on � (i) between a source � and a
destination � , and (ii) between a source � and a destination � . (i) For � and � , since ⟨�, �⟩ ∈ �path .key, we can
directly return Π

∗ (�, � |�). (ii) For � and � , since ⟨�, �⟩ ∉ �path.key, � and � are both keys in�end, we use the key
� with a smaller �-coordinate value to retrieve the value � in �end. Then, in �path, we use ⟨�, �⟩ and ⟨�, �⟩ to
retrieve Π∗ (�, � |�) and Π

∗ (�, � |�), for approximating Π
∗ (�, � |�).

4.2.2 Implementation Details of RC-Oracle (Construction Phase). We give the construction phase of
RC-Oracle.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 13

Notation: Let �rema be a set of remaining POIs of � that we have not used algorithm FastFly to calculate the
exact shortest paths passing on � with POIs in �rema as sources. �rema is initialized to be � . Given an endpoint
(a point on � or a POI in �) �, let � (�) be a set of endpoints that we need to use FastFly to calculate the exact
shortest paths passing on � from � to �� ∈ � (�) as destinations. In the construction phase of RC-Oracle, � and
each element in � (�) are POIs in � . � (�) is empty at the beginning. In Figure 3 (c), �rema = {�, �, �} since we
have not used FastFly to calculate the exact shortest paths with � , � , � as source. � (�) = {�} since we need to use
FastFly to calculate the exact shortest path from � to � .
Detail and example: Algorithm 1 shows the construction phase of RC-Oracle in detail, and the following

illustrates it with an example.

Algorithm 1 RC-Oracle-Construction (�, �, �)

Input: A point cloud � . A set of POIs � . An error parameter � .

Output: A path map table�path. An endpoint map table�end.

1: �rema ← �,�path ← ∅, �end ← ∅
2: if �� ≥ �� (resp. �� < ��) then

3: Sort POIs in �rema in ascending order using �-coordinate (resp. �-coordinate)

4: while �rema is not empty do

5: � ← a POI in �rema with the smallest �-coordinate / �-coordinate

6: �rema ← �rema − {�}, � ′rema ← �rema

7: Calculate the exact shortest paths passing on � from � to each POI in � ′rema simultaneously using algorithm FastFly

8: for each POI � ∈ � ′rema do

9: key← ⟨�, �⟩, value← Π
∗ (�, � |�),�path ← �path ∪ {key, value}

10: Sort POIs in � ′rema in ascending order based on |Π∗ (�, � |�) | for each � ∈ �rema

11: for each sorted POI � ∈ � ′rema such that �� (�, �) ≤ �� do

12: �rema ← �rema − {�}, � ′rema ← � ′rema − {�}, � (�) ← ∅
13: for each POI� ∈ � ′rema do

14: if 2
�
· |Π∗ (�, � |�) | < �� (�,�) and � ∉ �end .key then

15: key← � , value← �,�end ← �end ∪ {key, value}
16: else if 2

�
· |Π∗ (�, � |�) | ≥ �� (�,�) then

17: � (�) ← � (�) ∪ {�}
18: Calculate the exact shortest paths passing on � from � to each POI in � (�) simultaneously using algorithm FastFly

19: for each POI� ∈ � (�) do
20: key← ⟨�,�⟩, value← Π

∗ (�,� |�),�path ← �path ∪ {key, value}
21: return �path and�end

(1) POIs sort (lines 2-3): In Figure 3 (b), since �� < �� , the sorted POIs are �, �, � , � , � .
(2) Shortest paths calculation (lines 4-20): There are two steps.
(i) Exact shortest paths calculation (lines 5-9): In Figure 3 (b), � has the smallest �-coordinate based on the

sorted POIs in �rema. We delete � from �rema, so �rema = � ′rema = {�, �, �, �}. We calculate the exact shortest paths
passing on � from � to �, � , � , � (in purple lines) using algorithm FastFly, and store each POIs pair as a key and
the corresponding path as a value in�path.
(ii) Shortest paths approximation (lines 10-20): In Figure 3 (c), � is the POI in � ′rema closest to �, � is the POI in

� ′rema second closest to �, so the following order is �, �, There are two cases:
• Approximation loop start (lines 11-20): In Figure 3 (c), we irst select �’s closest POI in � ′rema, i.e., �. Since
�� (�, �) ≤ ��, it means � and � are not far away. We start the approximation loop, delete � from �rema and
� ′rema, so �rema = � ′rema = {�, �, �}. There are three steps:

ACM Trans. Datab. Syst.

14 • Y. Yan and R. Chi-Wing Wong

ś Far away POIs selection (lines 13-15): In Figure 3 (c), 2
�
· |Π∗ (�, � |�) | < �� (�, �), 2

�
· |Π∗ (�, � |�) | < �� (�, �),

� ∉ �end .key and � ∉ �end .key, it means � and � are far away from �. So, we can use Π
∗ (�, � |�) and

Π
∗ (�, � |�) to approximate Π∗ (�, � |�), and use Π∗ (�, � |�) and Π

∗ (�, � |�) to approximate Π∗ (�, � |�). We get
ΠRC-Oracle (�, � |�) by concatenating Π

∗ (�, � |�) and Π
∗ (�, � |�), and get ΠRC-Oracle (�, � |�) by concatenating

Π
∗ (�, � |�) and Π

∗ (�, � |�). We store � as key and � as value in�end.
ś Close POIs selection (line 13 and lines 16-17): In Figure 3 (c), 2

�
· |Π∗ (�, � |�) | ≥ �� (�, �), it means � is close to

�. So, we cannot use any existing exact shortest paths passing on � to approximate Π∗ (�, � |�), and then we
store � into � (�).

ś Selected exact shortest paths calculation (lines 18-20): In Figure 3 (c), when we have processed all POIs in
� ′rema with � as a source, we have � (�) = {�}. We use algorithm FastFly to calculate the exact shortest path
passing on � between � and � , i.e., Π∗ (�, � |�) (in green line). We store ⟨�, �⟩ as a key and Π

∗ (�, � |�) as a
value in�path. Note that we can terminate algorithm FastFly earlier since we just need to visit POIs that are
close to �, and we do not need to visit � and � .

• Approximation loop end (line 11): In Figure 3 (c), since we have processed �, and � ′rema = {�, �, �}, we select �’s
closest POI in � ′rema, i.e., � . Since �� (�, �) > ��, it means � and � are far away, and it is unlikely to have a POI�
that satisies 2

�
· |Π∗ (�, � |�) | < �� (�,�). So, we end the approximation loop and terminate the iteration.

(3) Shortest paths calculation iteration (lines 4-20): In Figure 3 (d), we repeat the iteration, and calculate the
exact shortest paths passing on � with � as a source (in orange lines).

4.2.3 Implementation Details of RC-Oracle (Shortest Path uery Phase). We give the shortest path
query phase of RC-Oracle.
Detail and example: Given a pair of POIs � and � in � , there are two cases (� and � are interchangeable, i.e.,
⟨�, �⟩ = ⟨�, �⟩):
(1) Exact shortest path retrieval: If ⟨�, �⟩ ∈ �path .key, we use ⟨�, �⟩ to retrieve Π∗ (�, � |�) as ΠRC-Oracle (�, � |�) in

� (1) time. In Figures 3 (d) and (e), given � and � , since ⟨�, �⟩ ∈ �path .key, we retrieve Π
∗(�, � |�).

(2) Approximate shortest path retrieval: If ⟨�, �⟩ ∉ �path.key, it means Π∗ (�, � |�) is approximated by two exact
shortest paths passing on � in �path, and (i) either � or � is a key in �end, or (ii) both � and � are keys in �end.
Without loss of generality, suppose that (i) � exists in�end if either � or � is a key in�end, or (ii) the �- (resp. �-)
coordinate of � is smaller than or equal to � when �� ≥ �� (resp. �� < ��) if both � and � are keys in�end. For both
of two cases, we use the key � to retrieve the value �′ in�end in� (1) time, and then use ⟨�, �′⟩ and ⟨�′, �⟩ to retrieve
Π
∗ (�, �′ |�) and Π

∗ (�′, � |�) in �path in � (1) time. We then use Π∗ (�, �′ |�) and Π
∗ (�′, � |�) as ΠRC-Oracle (�, � |�) to

approximate Π∗(�, � |�). (i) In Figures 3 (d) and (e), given � and � , ⟨�, �⟩ ∉ �path .key, and � is a key in �end. So,
we use the key � to retrieve the value � in �end. Then, in �path, we use ⟨�, �⟩ and ⟨�, �⟩ to retrieve Π∗ (�, � |�)
and Π

∗(�, � |�), for approximating Π
∗ (�, � |�). (ii) In Figures 3 (d), (e) and (f), given � and � , ⟨�, �⟩ ∉ �path .key, �

and � are both keys in�end, and �� < �� . So, we use the key � with a smaller �-coordinate value to retrieve the
value � in�end. Then, in�path, we use ⟨�, �⟩ and ⟨�, �⟩ to retrieve Π∗ (�, � |�) and Π

∗ (�, � |�), for approximating
Π
∗ (�, � |�)).

4.2.4 Proximityuery Algorithms using RC-Oracle. We introduce the key idea of proximity query algo-
rithms using RC-Oracle. In Figure 9, given � , a query object �, a set of �′ target objects � on � , a value � in kNN

query and a value � in range query, we can answer kNN and range queries using RC-Oracle. In the P2P query,
the query object is a POI in � , and the target objects are POIs in � . A naive algorithm performs the shortest
path query �′ times with � as a source and performs a linear scan on the results. Then, it returns all shortest
paths passing on � from � to its � nearest target objects of � or target objects whose distance to � is at most � .
We propose an eicient algorithm for it. Intuitively, when constructing these oracles, we have used the SSAD
algorithm to calculate shortest paths passing on � with � as a source and sorted these paths in ascending order

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 15

based on their distance in�path. We can use a set of lists to store these sorted paths, where each list stores a set
of sorted paths with one POI as the source. For these paths, we do not need to perform linear scans over all of
them in proximity queries for time-saving. Then, we give the notation, detail and example (using kNN query
with � = 1).

C, query object q, set of target
objects O and value k or r

kNN or range
query path resultkNN or range query Proximity query

Fig. 9. Proximity query algorithm overview

Notation: Let list�, list�, . . . be a set of lists, where each list stores a set of sorted paths calculated by SSAD

algorithm with one POI �, �, . . . as the source. Let�list be a hash table that stores key-value pairs. Each key-value
pair stores an endpoint � as a key, and the corresponding list list� as a value. � is the endpoint that we use as a
source to calculate the exact shortest paths passing on � . list� is the corresponding sorted paths. In Figure 3 (d),
we store Π∗ (�, � |�), Π∗ (�, � |�), Π∗ (�, � |�) and Π∗ (�, � |�) in order in list� . We store Π∗ (�, � |�) in list� . We store �
as a key, and list� as a value in�list. We also store � as a key, and list� as a value in�list.
Detail and example: There are two cases.
(1) Approximation needed in direct result return: If � ∈ �end .key, it means we need to use two paths in�path to

approximate some other paths in a later stage, we use the key � to retrieve the value �′ in�end, there are two
more cases. In Figures 3 (d) and (e), given � as the query object, since � ∈ �end .key, we use the key � to retrieve
the value � in�end, there are two more cases.
(i) Linear scan: For the target objects with a smaller or same �- (resp. �-) coordinate compared with �′ when

�� ≥ �� (resp. �� < ��), we perform a linear scan on the shortest path query result between � and them. We
maintain kNN or range query result. In Figures 3 (d) and (e), since �� < �� , the POI with a smaller or same
�-coordinate compared with � is {�}, we perform a linear scan on the shortest path query result between � and
{�}. The kNN result stores {Π∗ (�, � |�)}.
(ii) Direct result return: For the target objects (not including �) with a larger �- (resp. �-) coordinate compared

with �′ when �� ≥ �� (resp. �� < ��), there are further more two cases. In Figures 3 (d) and (e), since �� < �� ,
the POIs with a larger �-coordinate compared with � are {�, �, �}, there are further more two cases.
• Direct result return without approximation: If the endpoint pairs of � and these target objects are keys in�path, it
means that we have used the SSAD algorithm with � as a source for such objects and already sorted such paths
in order in list� . We can use � to retrieve list� in�list. We maintain kNN or range query result. In Figures 3 (d)
and (e), since ⟨�, �⟩ ∈ �path.key, we know that Π∗ (�, � |�) is sorted in order in list� . We use � to retrieve list� in
�list. The sorted path in list� is Π∗ (�, � |�). The kNN result stores {Π∗ (�, � |�)}.
• Direct result return with approximation: If the endpoint pairs of � and these target objects are not keys in�path,
it means that we have used the SSAD algorithm with �′ as a source for such objects and already sorted such
paths in order in list�′ . We can use �′ to retrieve list�′ in�list. We just need to use the exact distance between
�′ and these target objects plus |Π∗ (�′, � |�) |, to get the approximate distance between � and � . We maintain
kNN or range query result. In Figures 3 (d) and (e), since ⟨�, �⟩ ∉ �path .key and ⟨�, �⟩ ∉ �path.key, we know
that Π∗ (�, � |�) and Π

∗ (�, � |�) are sorted in order in list� . We use � to retrieve list� in�list. The sorted paths in
list� are Π

∗ (�, � |�) and Π
∗(�, � |�). So, Π(�, � |�) and Π(�, � |�) are also sorted in order. The kNN result stores

{Π∗ (�, � |�)}.
(2) Approximation not needed in direct result return: If � ∉ �end.key, it means we do need to use two paths in

�path to approximate all other paths in a later stage, there are two more cases. In Figures 3 (d) and (e), given � as
the query object, since � ∉ �end .key, there are two more cases.

ACM Trans. Datab. Syst.

16 • Y. Yan and R. Chi-Wing Wong

(i) Linear scan: For the target objects with a smaller or same �- (resp. �-) coordinate compared with � when
�� ≥ �� (resp. �� < ��), we perform a linear scan on the shortest path query result between � and them. We
maintain kNN or range query result. In Figures 3 (d) and (e), since �� < �� , the POIs with a smaller �-coordinate
compared with � are {�, �}, we perform a linear scan on the shortest path query result between � and {�, �}. The
kNN result stores {Π∗ (�, � |�)}.
(ii) Direct result return: For the target objects with a larger �- (resp. �-) coordinate compared with � when

�� ≥ �� (resp. �� < ��), we have used the SSAD algorithm with � as a source for such objects and already sorted
such paths in order in list� . We can use � to retrieve list� in �list. We maintain kNN or range query result. In
Figures 3 (d) and (e), since �� < �� , the POIs with a larger �-coordinate compared with � are {�, �}, we know that
Π
∗ (�, � |�) and Π∗ (�, � |�) are sorted in order in list� . We use � to retrieve list� in�list. The sorted paths in list� are

Π
∗ (�, � |�) and Π

∗ (�, � |�). The kNN result stores {Π∗ (�, � |�)}.

4.2.5 Theoretical Analysis about RC-Oracle. We show some theoretical analysis.
(1) Algorithm FastFly and RC-Oracle: The analysis of algorithm FastFly is in Theorem 4.1, and the analysis

of RC-Oracle is in Theorem 4.2.

Theorem 4.1. The shortest path query time and memory consumption of algorithm FastFly are � (� log�) and
� (�), respectively. It returns the exact shortest path passing on the point cloud.

Proof. Since algorithm FastFly is a Dijkstra’s algorithm and there are total � points, we obtain the shortest
path query time and memory consumption. Since Dijkstra’s algorithm returns the exact shortest path, algorithm
FastFly returns the exact shortest path passing on the point cloud. □

Theorem 4.2. The oracle construction time, oracle size and shortest path query time of RC-Oracle are� (� log�
�
+

� log�), � (�
�
) and � (1), respectively. It always has |ΠRC-Oracle (�, � |�) | ≤ (1 + �) |Π∗ (�, � |�) | for any pair of POIs �

and � in � .

Proof. Firstly, we show the oracle construction time. (i) In POIs sort step, it needs � (� log�) time since there

are � POIs and we use quick sort. (ii) In shortest paths calculation step, it needs � (� log�
�
+ �) time. (a) It uses

� (1
�
) POIs as sources to run algorithm FastFly for exact shortest paths calculation according to standard packing

property [25], where each algorithm FastFly needs � (� log�) time. (b) For other � (�) POIs, which are not used
as sources to run algorithm FastFly, we calculate the Euclidean distance from these POIs to other POIs in � (1)
time for shortest paths approximation. (iii) So, the oracle construction time is � (� log�

�
+ � log�).

Secondly, we show the oracle size. (i) For �end, its size is � (�) since there are � POIs. (ii) For �path, its size

is � (�
�
). (a) We store � (�

�
) exact shortest paths passing on � from � (1

�
) POIs (that are used as sources to run

algorithm FastFly) to other � (�) POIs. (b) We also store � (�) exact shortest paths passing on � from � (�) POIs
(that are used as sources to run algorithm FastFly) to other � (1) POIs. (iii) So, the oracle size is � (�

�
).

Thirdly, we show the shortest path query time. (i) If Π∗(�, � |�) ∈ �path, the shortest path query time is � (1).
(ii) If Π∗ (�, � |�) ∉ �path, we need to use � to retrieve �′ in�end in � (1) time, and use ⟨�, �′⟩ and ⟨�′, �⟩ to retrieve
Π
∗ (�, �′ |�) and Π

∗ (�′, � |�) in �path in � (1) time. The shortest path query time is still � (1). Thus, the shortest
path query time of RC-Oracle is � (1).

Fourthly, we show the error bound. Given a pair of POIs � and � , if Π∗ (�, � |�) exists in�path, then there is no error.
Thus, we only consider the case that Π∗ (�, � |�) does not exist in�path. Suppose that � is a POI close to � , such that

ΠRC-Oracle (�, � |�) is calculated by concatenating Π∗ (�,� |�) and Π∗ (�, � |�). This means that 2
�
·Π∗ (�, � |�) < �� (�, �).

So, we have |Π∗ (�,� |�) | + |Π∗ (�, � |�) | < |Π∗ (�,� |�) | + |Π∗ (�, � |�) | + |Π∗ (�, � |�) | = |Π∗ (�, � |�) | + 2 · |Π∗(�, � |�) | <
|Π∗ (�, � |�) | + � · �� (�, �) ≤ |Π∗ (�, � |�) | + � · |Π∗ (�, � |�) | = (1+ �) |Π∗ (�, � |�) |. The irst inequality is due to triangle
inequality. The second equation is because |Π∗ (�, � |�) | = |Π∗ (�,� |�) |. The third inequality is because we have

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 17

2
�
· Π∗ (�, � |�) < �� (�, �). The fourth inequality is because the Euclidean distance between two points is no larger

than the shortest distance on the point cloud between the same two points. □

(2) Relationships of the shortest distance on a point cloud, and the shortest surface or network

distance on a TIN : We show the relationship of |Π∗ (�, � |�) | with |Π� (�, � |�) | and |Π∗ (�, � |�) | in Lemma 4.3.

Lemma 4.3. Given a pair of points � and � on � , we have (i) |Π∗ (�, � |�) | ≤ |Π� (�, � |�) | and (ii) |Π∗ (�, � |�) | ≤
� ′ · |Π∗ (�, � |�) |, where � ′ =max{ 2

sin� ,
1

sin� cos� }.

Proof. (i) In Figure 2 (a), given a green point � on � , it can connect with one of its 8 neighbor points (7 blue
points and 1 red point �). In Figure 2 (c), given a green vertex � on � , it can only connect with one of its 6 blue
neighbor vertices. So, |Π∗ (�, � |�) | ≤ |Π� (�, � |�) |. (ii) We let Π� (�, � |�) be the shortest path passing on the edges
of � (where these edges belong to the faces that Π∗ (�, � |�) passes) between � and � . According to left hand side
equation in Lemma 2 of study [28], we have |Π� (�, � |�) | ≤ � ′ · |Π∗ (�, � |�) |. Since Π� (�, � |�) considers all the
edges on � , |Π� (�, � |�) | ≤ |Π� (�, � |�) |. Thus, we inish the proof by combining these inequalities. □

(3) Proximity query algorithms: We provide analysis on the proximity query algorithms using RC-Oracle.
For the kNN and range queries, both of them return a set of target objects. Given a query object �, we let � � (resp.
� ′
�
) be the furthest returned target object to � calculated using the exact distance on � (resp. the approximated

distance on � returned by RC-Oracle). We deine the error rate of the kNN and range queries to be
|Π∗ (�,�′

�
|�) |

|Π∗ (�,�� |�) | ,

which is a real number no smaller than 1. Then, we show the query time and error rate of kNN and range queries
using RC-Oracle in Theorem 4.4.

Theorem 4.4. The query time and error rate of both the kNN and range queries by using RC-Oracle are � (�′)
and (1 + �), respectively.

Proof Sketch. The query time is due to the usage of the shortest path query phase for �′ times in the worst
case. The error rate is due to its deinition and the error of RC-Oracle. The detailed proof appears in our technical
report [54]. □

4.3 RC-Oracle-A2P-SmCon and Its Proximity uery Algorithms

4.3.1 Key Idea of RC-Oracle-A2P-SmCon. We introduce the key idea of the eicient adaptation from
RC-Oracle to RC-Oracle-A2P-SmCon in the A2P query. This makes sure that RC-Oracle-A2P-SmCon’s oracle
construction time remains the same as RC-Oracle, and shortest path query time is smaller than algorithm FastFly,
i.e., the SSAD algorithm. The adaptation is achieved by using the SSAD algorithm with the assistance of RC-Oracle,
such that the SSAD algorithm can terminate earlier, i.e., similar to the rapid oracle construction reason for RC-Oracle.
Since RC-Oracle-A2P-SmCon has the same construction phase as RC-Oracle in Figures 3 (b) - (e), we only

illustrate its shortest path query phase with an example. In Figure 5 (a), for a non-POI point � , we irst use the
SSAD algorithm with � as a source, and visit all POIs with the �-coordinate smaller than or equal to � (i.e., �, �, �).
Note that in this igure, it seems that the �-coordinate of � is larger than � in the 3D point cloud. But indeed,
their �-coordinates are the same (in 2D). At the same time, before the termination of the SSAD algorithm, if
we can also visit the POIs with the �-coordinate larger than � , we also calculate shortest paths passing on �

between � and these POIs. In Figure 5 (b), we need to ind a POI such that we have used this POI as a source
in the SSAD algorithm, this POI is not a key in�end, and the exact distance on � between � and this POI is the
smallest. This POI is �. If � is close to the POI �, and � is far away from � , i.e., 2

�
· |Π∗ (�, � |�) | < �� (�, �), then we

can use Π∗ (� , � |�) and Π
∗ (�, � |�) to approximate Π∗ (� , � |�). The irst term łif � is close to �ž is judged using

the previously calculated |Π∗ (�, � |�) |. The second term łif � is far away from �ž is judged using the Euclidean
distance �� (�, �). Thus, we just need to continue the previous SSAD algorithm with � as a source, and terminate

ACM Trans. Datab. Syst.

18 • Y. Yan and R. Chi-Wing Wong

earlier when it has visited � . We store the paths from the SSAD algorithm in�path, and store � as key and � as
value in�end. Note that the SSAD algorithm (i.e., FastFly) is a Dijkstra’s algorithm, so given a source, after we
terminate it, we can save the result [4] (e.g., priority queue and list) of the Dijkstra’s algorithm. If we continue
the SSAD algorithm with the same source, we can reuse the previously saved result, and there is no need to start
from scratch for time-saving. In Figure 5 (c), we have the updated �path and �end. In Figure 5 (d), we need to
query the shortest path passing on � between � and � . Similar to the shortest path query phase of RC-Oracle,
since ⟨�, � ⟩ ∉ �path .key, � is key in�end, we use the key � to retrieve the value � in�end. Then, in�path, we use
⟨�, �⟩ and ⟨�, � ⟩ to retrieve Π∗ (�, � |�) and Π

∗ (�, � |�), for approximating Π
∗ (�, � |�).

However, the shortest path query time of simply using algorithm FastFly with � as a source without pruning
any other destination POIs is large. Our experimental result shows that the shortest path query time for RC-
Oracle-A2P-SmCon is half of algorithm FastFly.

4.3.2 Implementation Details of RC-Oracle-A2P-SmCon (Shortest Pathuery Phase). The construction
phase of RC-Oracle-A2P-SmCon is the same as RC-Oracle. We give its shortest path query phase as follows.

Notation: Given a source �, we re-use the notation � (�) as in the construction phase of RC-Oracle, but � is a
point on � and elements in � (�) are POIs in � in the shortest path query phase of RC-Oracle-A2P-SmCon. Let
� ′ = � − � (�) be a set of POIs that are in � and not in � (�). In Figure 5 (a), � (�) = {�, �, �} since we need to use
algorithm FastFly to calculate the exact shortest path from � to �,�, � , and � ′ = {�, �}.
Detail and example: Algorithm 2 shows the shortest path query phase of RC-Oracle-A2P-SmCon in detail,

and the following illustrates it with an example.
(1) New shortest paths calculation (lines 1-18): In Figure 5 (a), given � as a source that is not a POI, and � as a

destination that is a POI, there are ive steps. If both source and destination are POIs, we can skip these ive steps.
(i) Smaller �- or �-coordinate POIs exact shortest paths calculation (lines 3-6): In Figure 5 (a), since �� < �� , we

have � (�) = {�, �, �}. We calculate the exact shortest paths passing on � from � to �, �, � (in orange lines) using
algorithm FastFly.
(ii) Approximate POI selection and destination POIs update (lines 7-10): In Figure 5 (a), we have � as the POI,

since the exact distance on � between � and � is the smallest, and � ∉ �end.key = {�, �}. During the execution of
algorithm FastFly, if we can also visit the POIs with the �-coordinate larger than � , we also calculate shortest
paths passing on � between � and these POIs, and update � (�) to cover those POIs. In this igure, there are no
such POIs and we do not need to � (�). So, � (�) = {�,�, �} and � ′ = {�, �}.
(iii) Far away POIs selection (lines 11-13): In Figure 5 (b), 2

�
· |Π∗ (�, � |�) | < �� (�, �) and � ∉ �end.key,

it means � is far away from � . So, we can use Π
∗ (� , � |�) and Π

∗ (�, � |�) to approximate Π
∗ (� , � |�). We get

ΠRC-Oracle-A2P-SmCon (� , � |�) by concatenating Π
∗ (� , � |�) and Π

∗ (�, � |�). We store � as key and � as value in�end.
(iv) Close POIs selection (line 11 and lines 14-15): In Figure 5 (b), 2

�
· |Π∗ (�, � |�) | ≥ �� (�, �), it means � is close

to � . So, we cannot use any existing exact shortest paths passing on� to approximate Π∗ (� , � |�). We store � into
� (�).

(v) Selected exact shortest paths calculation (lines 16-18): In Figure 5 (b), when we have processed all POIs in � ′

with � as a source, we have � (�) = {�, �, �, �}. We continue the previous algorithm FastFly with � as a source
to calculate the exact shortest path passing on � from � to each POI in � (�) (in orange lines). We store each
endpoint pair as a key and the corresponding path as a value in�path. Since we terminate the previous algorithm
FastFly when it visits �, �, � , there is no need to start from scratch for time-saving. Note that we can terminate
algorithm FastFly earlier since we just need to visit POIs that are close to � , and we do not need to visit � .

(2) Shortest path query (line 19): In Figure 5 (d), given � as a source that is not a POI, and � as a destination that
is a POI, we use the same shortest path query phase of RC-Oracle to query ΠRC-Oracle-A2P-SmCon (� , � |�). That is,
⟨� , �⟩ ∉ �path .key, and � is a key in�end. So, we use the key � to retrieve the value � in�end. Then, in�path, we
use ⟨� , �⟩ and ⟨�, �⟩ to retrieve Π∗ (� , � |�) and Π

∗ (�, � |�), for approximating Π
∗ (� , � |�).

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 19

Algorithm 2 RC-Oracle-A2P-SmCon-Query (�, �, �, �, �path, �end, �)

Input: A point cloud � . A set of POIs � . A source � that is any point on � . A destination � that is a POI in � . A path map

table�path. An endpoint map table�end. An error parameter � .

Output: An updated path map table�path. An updated endpoint map table�end. The shortest path ΠRC-Oracle-A2P-SmCon (�, � |�)
between � and � passing on � .

1: if ⟨�, �⟩ ∉ �path .key and � ∉ �end .key and � ∉ �end .key then

2: � (�) ← ∅
3: if �� ≥ �� (resp. �� < ��) then

4: for each POI � ∈ � such that the �-coordinate (resp. �-coordinate) of � is smaller than or equal to � do

5: � (�) ← � (�) ∪ {�}
6: Calculate the exact shortest paths passing on� from � to each POI in � (�) simultaneously using algorithm FastFly and

store the result of the algorithm

7: � ← the POI in� (�) such that the exact distance on� between � and�, i.e., |Π∗ (�,� |�) |, is the smallest and� ∉ �end .key

8: for each POI � ∈ � ′ such that � is also visited during the execution of algorithm FastFly do

9: � (�) ← � (�) ∪ {�}
10: � ′ ← � − � (�)
11: for each POI � ∈ � ′ do
12: if 2

�
· |Π∗ (�, � |�) | < �� (�, �) and � ∉ �end .key then

13: key← � , value← �,�end ← �end ∪ {key, value}
14: else if 2

�
· |Π∗ (�, � |�) | ≥ �� (�, �) then

15: � (�) ← � (�) ∪ {�}
16: Continue the previous algorithm FastFly with � as a source by reusing the previously saved result, to calculate the

exact shortest paths passing on � from � to each POI in � (�) simultaneously

17: for each POI � ∈ � (�) do
18: key← ⟨�, �⟩, value← Π

∗ (�, � |�),�path ← �path ∪ {key, value}
19: Use the same shortest path query phase of RC-Oracle to retrieve ΠRC-Oracle-A2P-SmCon (�, � |�)
20: return �path,�end and ΠRC-Oracle-A2P-SmCon (�, � |�)

4.3.3 Proximity uery Algorithms using RC-Oracle-A2P-SmCon. Recall that there is a query object � and
a set of �′ target objects � on � . In the A2P query, there are two cases. (1) The query object is any point on � ,
and the target objects are POIs in � . (2) The query object is a POI in � , and the target objects are any point on
� . For both cases, the proximity query algorithms using RC-Oracle-A2P-SmCon are similar to using RC-Oracle.
We just need to use Algorithm 2 lines 1-18 to calculate new shortest paths for � if needed, and then perform
similarly as in RC-Oracle. The only diference between the two cases is as follows. For the irst case, we do not
need to perform linear scans for paths calculated using algorithm FastFly in the shortest path query phase of
RC-Oracle-A2P-SmCon. Since they are already sorted in ascending order with � as the source. For the remaining
paths in the irst case and all paths in the second case, we perform linear scans on them for proximity queries.

4.3.4 Theoretical Analysis about RC-Oracle-A2P-SmCon. We show some theoretical analysis.
(1) RC-Oracle-A2P-SmCon: The analysis of RC-Oracle-A2P-SmCon is in Theorem 4.5.

Theorem 4.5. The oracle construction time, oracle size and shortest path query time of RC-Oracle-A2P-SmCon

are � (� log�
�
+ � log�), � (�

�
) and � (� log�), respectively. It always has |ΠRC-Oracle-A2P-SmCon (�, � |�) | ≤ (1 +

�) |Π∗ (�, � |�) | for any point � on � and any POI � in � .

ACM Trans. Datab. Syst.

20 • Y. Yan and R. Chi-Wing Wong

Proof. Compared with RC-Oracle, in the shortest path query time, we change � (1) to � (� log�), since
RC-Oracle-A2P-SmCon uses algorithm FastFly. In the error bound, we change łany pair of POIs � and � in �ž to
łany point � on � and any POI � in �ž. The others are the same as RC-Oracle. □

(2) Proximity query algorithms: We show the query time and error rate of kNN and range queries using
RC-Oracle-A2P-SmCon in Theorem 4.6.

Theorem 4.6. The query time and error rate of both the kNN and range queries by using RC-Oracle-A2P-SmCon

are � (� log� + �′) and (1 + �), respectively.

Proof Sketch. The query time is due to the usage of the new shortest paths calculation step in � (� log�)
time for only once, and the usage of the shortest path query step for �′ times in the worst case. The error rate is
due to its deinition and the error of RC-Oracle-A2P-SmCon. □

4.4 RC-Oracle-A2P-Smue and Its Proximity uery Algorithms

4.4.1 Key Idea of RC-Oracle-A2P-Smue. We introduce the key idea of the eicient adaptation from
RC-Oracle to RC-Oracle-A2P-SmQue in the A2P query. This makes sure that RC-Oracle-A2P-SmQue’s oracle
construction time will not increase a lot, and shortest path query time remains the same as RC-Oracle. We still
regard each POI as a source and use algorithm FastFly for � times. The only diference from RC-Oracle is that,
in RC-Oracle-A2P-SmQue, the destinations are not POIs in � , but all points on � . We do not use any point on �
as a source and use algorithm FastFly for � times, and set destinations to be POIs in � . This will be very slow
compared with RC-Oracle-A2P-SmQue.

4.4.2 Proximity uery Algorithms using RC-Oracle-A2P-Smue. Recall that there is a query object �
and a set of �′ target objects � on � , and there are two cases in the A2P query. For both cases, the proximity
query algorithms using RC-Oracle-A2P-SmQue are similar to using RC-Oracle. The only diference between the
two cases is as follows. For the second case, we do not need to perform linear scans for paths calculated using
algorithm FastFly in the shortest path query phase of RC-Oracle-A2P-SmQue. Since they are already sorted in
ascending order with � as the source. For the remaining paths in the second case and all paths in the irst case,
we perform linear scans on them for proximity queries.

4.4.3 Theoretical Analysis about RC-Oracle-A2P-Smue. We show some theoretical analysis.
(1) RC-Oracle-A2P-SmQue: The analysis of RC-Oracle-A2P-SmQue is in Theorem 4.7.

Theorem 4.7. The oracle construction time, oracle size and shortest path query time of RC-Oracle-A2P-SmQue are

� (� log�
�
+ � log�), � (�

�
) and � (1), respectively. It always have |ΠRC-Oracle-A2P-SmQue (�, � |�) | ≤ (1 + �) |Π∗ (�, � |�) |

for any point � on � and any POI � in � .

Proof. Compared with RC-Oracle, in the oracle size, we change � to � since RC-Oracle-A2P-SmQue regards
all points on � as possible destinations during oracle construction. In the error bound, we change łany pair of
POIs � and � in �ž to łany point � on � and any POI � in �ž. The others are the same as RC-Oracle. □

(2) Proximity query algorithms: We show the query time and error rate of kNN and range queries using
RC-Oracle-A2P-SmQue in Theorem 4.8.

Theorem 4.8. The query time and error rate of both the kNN and range queries by using RC-Oracle-A2P-SmQue

are � (�′) and (1 + �), respectively.

Proof Sketch. The proof is the same as RC-Oracle. □

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 21

4.5 RC-Oracle-A2A and Its Proximity uery Algorithms

4.5.1 Key Idea of RC-Oracle-A2A. We introduce the key idea of the eicient adaptation from RC-Oracle to
RC-Oracle-A2A. We just need to create POIs that have the same coordinate values as all points on � .

4.5.2 Proximity uery Algorithms using RC-Oracle-A2A. Recall that there is a query object � and a set of
�′ target objects � on � . In the A2A query, the query object is any point on � , and the target objects are any
point on � . Our proximity query algorithms using RC-Oracle-A2A are similar to using RC-Oracle.

4.5.3 Theoretical Analysis about RC-Oracle-A2A. We show some theoretical analysis.
(1) RC-Oracle-A2A: The analysis of RC-Oracle-A2A is in Theorem 4.9.

Theorem 4.9. The oracle construction time, oracle size and shortest path query time of RC-Oracle-A2A are

� (� log�
�
), � (�

�
) and � (1), respectively. It always has |ΠRC-Oracle-A2A (�, � |�) | ≤ (1 + �) |Π∗ (�, � |�) | for any pair of

points � and � on � .

Proof. Compared with RC-Oracle, in the oracle construction time and oracle size, we change � to � since
RC-Oracle-A2A creates POIs that have the same coordinate values as all points on the point cloud. In the error
bound, we change łany pair of POIs � and � in �ž to łany pair of points � and � on �ž. The others are the same as
RC-Oracle. □

(2) Proximity query algorithms: We show the query time and error rate of kNN and range queries using
RC-Oracle-A2A in Theorem 4.10.

Theorem 4.10. The query time and error rate of both the kNN and range queries by using RC-Oracle-A2A are

� (�′) and (1 + �), respectively.
Proof Sketch. The proof is the same as RC-Oracle. □

4.6 Adaptation to AR2P and AR2ARueries on TINs

We can adapt our oracles for A2P and A2A queries on point clouds to AR2P and AR2AR queries on TIN s. Apart
from converting the given TIN s to point clouds (the vertices of the TIN correspond to the points of the point
cloud), we need one more step. This step addresses the more general case of AR2P and AR2AR queries compared
with A2P and A2A queries, i.e., the source or destination may lie on the face of a TIN but not only the point
of a point cloud. We denote RC-Oracle-Adapt-AR2AR to be the adapted point cloud oracle of RC-Oracle-A2A
for AR2AR queries on a TIN, and use it for illustration (all other oracles are similar). Speciically, if both source
� and destination � lie on faces of the TIN, we denote the set of three vertices of the faces that � and � lie
in to be �� and �� , respectively. Let ΠRC-Oracle-Adapt-AR2AR (�, � |�) be the calculated shortest path of RC-Oracle-
Adapt-AR2AR passing on a TIN � between � and � . It is calculated by concatenating the line segment (�,�), the
path between two vertices � and � returned by RC-Oracle-Adapt-AR2AR, and the line segment (�, �), such that
|ΠRC-Oracle-Adapt-AR2AR (�, � |�) | = min∀�∈�� ,�∈�� [| (�,�) | + |ΠRC-Oracle-Adapt-AR2AR (�, � |�) | + |(�, �) |]. Note that | (�,�) |
and | (�, �) | are distances of (�,�) and (�, �), respectively. The case that � or � lie on the vertices of the TIN is similar
but simpler than this. All the theoretical analysis of RC-Oracle-Adapt-AR2AR is the same as RC-Oracle-A2A. The
details proof of the error bound regarding path concatenation appears in our technical report [54].

5 TI-Oracle and its Adaptations

We illustrate TI-Oracle. In Figure 10 (a), we have a point cloud � , a set of POIs � and an error parameter � . In
Figures 10 (b) - (h), we divide the points into several regions (similar to Voronoi cells [18] in a Voronoi diagram)
based on POIs. We construct TI-Oracle by calculating two types of shortest paths. The irst type is intra-paths
(in green lines of Figure 10 (d)) from POIs to points in the same region. The second type is inter-paths (in blue

ACM Trans. Datab. Syst.

22 • Y. Yan and R. Chi-Wing Wong

lines of Figure 10 (g)) among intersection points of these regions and the point cloud. In Figures 10 (i) - (k), for a
point � that is not a POI, we calculate intra-paths (in orange lines of Figure 10 (i)) from � to points in the same
region. Then, we calculate the shortest path between � and another POI using intra-paths and inter-paths stored
in TI-Oracle.

a

h

k

i

h

a

e

i

k

j

h

i
g

b

k

h

c

a

d

g

e

i
j

f

a

b

e

c

d

Mbelo

Mboun

Key Value

⟨a, f⟩ Π∗(a, f|C)

⟨a, g⟩ Π∗(a, g|C)

⟨a, h⟩ Π∗(a, h|C)

… …

⟨e, i⟩ Π∗(e, i|C)

⟨e, j⟩ Π∗(e, j|C)

⟨e, k⟩ Π∗(e, k|C)

Mintra-path

Minter-path

Minter-end

Construction phase …

(a) (b) (c) (d)

Key Value

a {g, h,…}

… …

e {i,…}

Key Value

f a

… …

j e

k e

Construction phase Shortest path query phase

Key Value

g h

… …

Key Value

⟨h, g⟩ Π∗(h, g|C)

⟨h, i⟩ Π∗(h, i|C)

… …

(e)

(g) (h) (i)

Key Value

⟨a, h⟩ Π∗(a, h|C)

… …

⟨e, k⟩ Π∗(e, k|C)

⟨k, i⟩ Π∗(k, i|C)

⟨k, j⟩ Π∗(k, j|C)

… …

Mintra-path
(j) (k)

Key Value

a {f,…}

… …

e {j, k,…}

Mcont

(f)

Fig. 10. TI-Oracle framework details

5.1 Overview of TI-Oracle and Its Adaptations

We introduce the two concepts, six components and two phases.

5.1.1 Concepts of TI-Oracle and Its Adaptations. There are two concepts. We use TI-Oracle as an example
to illustrate.

(1) The partition cell is a region that contains a set of points on the point cloud. Before we give more details,
we introduce the Voronoi diagram and the Voronoi cell [18]. Given a space and a set of POIs, a Voronoi diagram
partitions the space into a set of disjoint Voronoi cells using the POIs. Similarly, given a point cloud � and a set
of POIs in � , we partition � into a set of partition cells using � . The boundary of each partition cell lies on the
edges of the point cloud graph of � . If a point lies inside but does not lie on the boundary of a partition cell, we
say that this point belongs to this partition cell. In Figures 10 (b) and (c), given � and � , we use the process of
constructing Voronoi cells to obtain the partition cells of � based on � . In Figure 10 (d), there are ive partition
cells in diferent colors. � belongs to the partition cell corresponding to �, but � and ℎ do not belong to the
partition cell corresponding to � (since they lie on the boundary of this partition cell).

(2) The boundary point is an intersection point between � and partition cell’s boundary. Given � and � , we
obtain a set of boundary points �. In Figure 10 (d), �, ℎ, � are three boundary points.

5.1.2 Components of TI-Oracle and Its Adaptations. There are six components. All of them are hash tables

that store key-value pairs.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 23

(1) The containing point map table �cont: Each key-value pair stores an endpoint � as a key, and a set
of points {�1, �2, . . . } as a value. The endpoint is a POI in � or any point on � , depending on the oracle A2P
or A2A query types. � is used for creating the partition cell, and {�1, �2, . . . } are the points on � except � that
belong to the partition cell corresponding to �. In Figure 10 (d), � is a point on � that belongs to the partition cell
corresponding to �, so we store � as a key and {� , . . . } as a value in�cont in Figure 10 (e). Similarly, we store � as
a key and { �, �, . . . } as a value in�cont.
(2) The boundary point map table �boun: Each key-value pair stores an endpoint � as a key, and a set of

boundary points {�1, �2, . . . } as a value. � is used for creating the partition cell, and {�1, �2, . . . } are the boundary
points of the partition cell corresponding to �. In Figure 10 (d), �, ℎ are two boundary points of the partition cell
corresponding to �, so we store � as a key and {�, ℎ, . . . } as a value in�boun in Figure 10 (e). Similarly, we store �
as a key and {�, . . . } as a value in�boun.
(3) The belonging point map table �belo: Each key-value pair stores a point � on � as a key and another

endpoint � as a value. � is used for creating the partition cell, and � belongs to the partition cell corresponding to
� . In Figure 10 (d), � belongs to the partition cell corresponding to �, so we store � as a key and � as a value in
�belo in Figure 10 (e). Similarly, we store � as a key and � as a value, and � as a key and � as a value in�belo.
(4) The intra-path map table �intra-path: Consider an endpoint � and a point � on � , and � belongs to the

partition cell corresponding to � or � is the boundary point of the partition cell corresponding to �. We call the
exact shortest path passing on� between � and � as the intra-path. In�intra-path, each key-value pair stores � and
� , as a key ⟨�, �⟩, and the corresponding intra-path Π

∗ (�, � |�), as a value. In Figure 10 (d), there are 6, 4 and 3
intra-paths in green lines with �, � and � as a source, respectively, and they are stored in�intra-path in Figure 10
(f). For intra-paths between � and � , we store ⟨�, � ⟩ as a key and Π

∗ (�, � |�) as a value in�intra-path. Similarly, we
store ⟨�,�⟩ as a key and Π

∗ (�,� |�) as a value in�intra-path. In Figure 10 (i), there are 3 intra-paths in orange lines
with � as a source, where � is not a POI.

(5) The inter-path map table�inter-path: Consider a pair of boundary points � and � . We call a path passing on
� between � and � as the inter-path, and denote it as Πinter-path (�, � |�). We call the exact shortest path passing on
� between � and � as the exact inter-path. In�inter-path, each key-value pair stores � and � , as a key ⟨�, �⟩, and the
corresponding exact inter-path Π

∗ (�, � |�), as a value. By regarding all the boundary points as POIs in RC-Oracle,
�inter-path in TI-Oracle and TI-Oracle-A2A is the same as �path in RC-Oracle. In Figure 10 (g), Πinter-path (ℎ, � |�)
is the same as Π∗ (ℎ, � |�), and Πinter-path (�, � |�) is approximated by Π

∗ (�, ℎ |�) and Π
∗ (ℎ, � |�). There are 6 exact

inter-paths in blue lines, and they are stored in�inter-path in Figure 10 (h). For the exact inter-paths between ℎ and
�, we store ⟨ℎ,�⟩ as a key and Π

∗ (ℎ,� |�) as a value in�inter-path. Similarly, we store ⟨ℎ, �⟩ as a key and Π
∗ (ℎ, � |�)

as a value in�inter-path.
(6) The inter-endpoint map table �inter-end: Each key-value pair stores a boundary point � as a key and

another boundary point � as a value. By regarding all the boundary points as POIs in RC-Oracle, �inter-end in
TI-Oracle and TI-Oracle-A2A is the same as �end in RC-Oracle. In Figure 10 (g), � is close to ℎ, we concatenate
Π
∗ (�, ℎ |�) and the exact shortest paths passing on� with ℎ as a source, to approximate shortest paths passing on

� with � as a source. So, we store � as a key, and ℎ as a value in�inter-end in Figure 10 (h).

5.1.3 Phases of TI-Oracle and Its Adaptations. There are two phases.
(1) TI-Oracle (see Figures 10 and 11): (i) In the construction phase, given � , � and � , we divide � into several

partition cells based on � , to obtain a set of boundary points �. We store the points that belong to each partition
cell in�cont and�belo, and store the boundary points of each partition cell in�boun. We pre-compute the exact
shortest paths passing on � between each POI and (a) each point that belongs to the partition cell generated
by this POI, and (b) each boundary point of the same partition cell. We store these calculated intra-paths in
�intra-path. We pre-compute the exact shortest paths passing on� between some selected pairs of boundary points
(by regarding boundary points as POIs in RC-Oracle). We store these calculated exact inter-paths in�inter-path, and

ACM Trans. Datab. Syst.

24 • Y. Yan and R. Chi-Wing Wong

store the non-selected boundary points and their corresponding selected boundary points in�inter-end. (ii) In the
shortest path query phase, given any point � on � and a POI in � , we calculate the exact shortest paths passing
on � between � and (a) each point that belongs to the partition cell that � lies inside, and (b) each boundary point
of the same partition cell. We store the calculated paths in�intra-path. Then, given�cont,�boun,�belo,�intra-path,
�inter-path and�inter-end, we answer the path results between � and this POI.

C, P, any point s on C and a POI t in P, B, Mcont,
Mboun, Mbelo, Mintra-path, Mintra-path and Minter-end

Shortest path ΠTI-Oracle (s , t|C)

Construction phase

Shortest path query phase

Point cloud C, set of POIs P
and error parameter �

Intra and
inter path

calculation

Path query

Intra-path map table
Mintra-path, inter-path
map table Minter-path

and inter-endpoint
map table Minter-end

Partition cells calculation

Set of boundary points B,
containing point map table
Mcont, boundary point map
table Mboun and belonging

point map table Mbelo

Intra path calculation

Updated Mintra-path

Fig. 11. TI-Oracle framework overview

(2) TI-Oracle-A2A: (i) In the construction phase, given � and � , the procedure is similar to TI-Oracle. The only
diference is that no POI is given as input, we need to randomly select some points on the point cloud as POIs
to construct the partition cells. (ii) In the shortest path query phase, given any pair of points � and � on � , the
procedure is similar to TI-Oracle, the only diference is that we perform the same query twice for both � and � .

5.2 TI-Oracle and Its Proximity uery Algorithms

5.2.1 Key Idea of TI-Oracle. We introduce the key idea of the construction of partition cells of TI-Oracle, the
key idea of the small oracle construction time and small oracle size of TI-Oracle, and the key idea of shortest path
query of TI-Oracle as follows.
(1) Construction of partition cells: In Figure 10 (a), we have � and � . In Figure 10 (b), we project � in the

2D plane. We build a Voronoi diagram in Euclidean space using the grid-based 2D point cloud and POIs with the
sweep line algorithm [18] in � (� log�) time, and obtain a set of Voronoi cells. In Figure 10 (c), we obtain a set of
partition cells in the 2D plane by correcting the boundary of each Voronoi cell, such that the boundary of each
partition cell lies on edges of the point cloud graph of� . Then, we project the partition cells in the 2D plane back
to the 3D space to obtain the partition cells of � .

We discuss more about the boundary correction step. In Figure 12 (a), we have a part of the Voronoi diagram
with three Voronoi cells and a point cloud graph (without the diagonal edges) of � in the 2D plane. We have
some intersection points between the boundary of the 2D Voronoi cells and the 2D point cloud graph, e.g., the
blue points. We move each point to one of the two closest points on � of the edge that this intersection point lies
on, i.e., following the red arrows. We also have some intersection points among the boundary of the 2D Voronoi
cells, e.g., the green point. We move each point to one of the four closest points on � of the square that this
intersection point lies on, i.e., following the orange arrow. In Figure 12 (b), we connect these intersection points,
to form the boundary (in pink lines) of partition cells in the 2D plane.

(2) Small oracle construction time: We give the reason why TI-Oracle has a small oracle construction time.
It is due to the tight shortest paths result of TI-Oracle. During construction, we only calculate intra-paths and exact
intra-paths by algorithm FastFly, i.e., the SSAD algorithm. We can terminate it earlier for both types of paths.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 25

(a)

(b)

Fig. 12. Boundary correc-

tion of the 2D partition cells

Table 4. Point cloud datasets

Name |� |
Original dataset

BearHead (BH�) [3, 45, 46] 0.5M

EaglePeak (EP�) [3, 45, 46] 0.5M

GunnisonForest (GF�) [7] 0.5M

LaramieMount (LM�) [8] 0.5M

RobinsonMount (RM�) [12] 0.5M

Small-version dataset

BH� -small 10k

EP� -small 10k

GF� -small 10k

LM� -small 10k

RM� -small 10k

Multi-resolution dataset

BH� multi-resolution 1M, 1.5M, 2M, 2.5M

EP� multi-resolution 1M, 1.5M, 2M, 2.5M

GF� multi-resolution 1M, 1.5M, 2M, 2.5M

LM� multi-resolution 1M, 1.5M, 2M, 2.5M

RM� multi-resolution 1M, 1.5M, 2M, 2.5M

EP� -small multi-resolution 20k, 30k, 40k, 50k

We use an example for illustration. In Figure 10 (a), we have a set of POIs �, �, �, �, � . In Figures 10 (b) and
(c), we construct partition cells. In Figures 10 (d) - (f), by using the partition cells, we store the corresponding
information in�cont,�boun and�belo. We regard each POI as a source and use the SSAD algorithm to calculate
intra-paths in green lines. We terminate earlier when each has visited all the points that belong to the partition
cell generated by each POI, and the boundary points of the same partition cell. We use the POI to retrieve such
points in�cont and�boun. We store intra-paths in�intra-path. In Figures 10 (g) and (h), we regard boundary points
as POIs in RC-Oracle to calculate exact inter-paths in blue lines. Due to the rapid oracle construction advantage
of RC-Oracle, we can also terminate the corresponding SSAD algorithm earlier. We store exact inter-paths in
�inter-path, and the corresponding boundary points in�inter-end. No matter whether the density of POIs is high or
low (i.e., POIs are close to or far away from each other), boundary points are always close to each other. So, we
can always utilize the rapid oracle construction advantage of RC-Oracle. We can use the previously calculated
shortest paths to approximate other shortest paths, to terminate the SSAD algorithm with each boundary point
as a source earlier.
However, in RC-Oracle-A2A, it needs to use the SSAD algorithm with each point on � as a source to cover

all other points on � , which results in a large oracle construction time. In addition, in RC-Oracle-A2P-SmQue,
when the density of POIs is low (i.e., POIs are far away from each other), it is diicult to utilize the rapid

oracle construction advantage of RC-Oracle. Since it is diicult to use the previously calculated shortest paths to
approximate other shortest paths, and diicult to terminate the SSAD algorithm with each POI as a source earlier.

(3) Small oracle size: We give the reason why TI-Oracle has a small oracle size. We only store a small number
of intra-paths and inter-paths in TI-Oracle, i.e., we do not store the paths between any pair of points on � . In
Figure 10 (d), we only store intra-paths in green lines. In Figure 10 (g), for a pair of boundary points � and � ,
we use the exact inter-paths Π∗ (�, ℎ |�) and Π

∗ (ℎ, � |�) in blue lines to approximate Π∗ (�, � |�). We will not store
Π
∗ (�, � |�) in�inter-path for memory saving.
(4) Shortest path query: We use an example to illustrate the shortest path query phase of TI-Oracle. In

Figures 10 (i) - (j), given a source point� that is not a POI, we use the SSAD algorithmwith� as a source, to calculate
intra-paths in orange lines. We can terminate earlier when it has visited all the points that belong to the partition

ACM Trans. Datab. Syst.

26 • Y. Yan and R. Chi-Wing Wong

cell that � lies inside and the boundary points of the same partition cell. We store intra-paths in�intra-path. Given a
destination POI, there are two cases. (i) If the destination POI is � such that ⟨�, �⟩ ∈ �intra-path .key, we can directly
return Π

∗ (�, � |�). (ii) If the destination POI is � such that ⟨�, �⟩ ∉ �intra-path.key, we have the following. We let ��
and �� be two sets of boundary points of the partition cells that source � and destination � belong to, respectively.
We can use � = � to retrieve � in �belo, and then use � to retrieve �� = {�, . . . } in �boun. We can use � = � to
retrieve �� = {ℎ, . . . } in�boun. �� and �� are red points around � and �. We calculate the result by concatenating
Π
∗ (�, � ′ |�), Πinter-path (� ′, �′ |�) and Π∗ (�′, � |�) such that |Π∗ (�, � ′ |�) | + |Πinter-path (� ′, �′ |�) | + |Π∗ (�′, � |�) | is the

smallest for any � ′ ∈ �� and �′ ∈ �� . In this case, � ′ = � and �′ = ℎ. We can use ⟨�, �⟩ and ⟨�, ℎ⟩ to retrieve
Π
∗ (�, � |�) and Π

∗ (�, ℎ |�) in�intra-path, respectively. We can use the shortest path query phase in RC-Oracle, ℎ, � ,
�inter-path and�inter-end to calculate Πinter-path (ℎ, � |�) = Π

∗ (ℎ, � |�).

5.2.2 Implementation Details of TI-Oracle (Construction Phase). We give the construction phase of
TI-Oracle.

Notation: Given a source �, we re-use the notation � (�) as in the construction phase of RC-Oracle, but � is a
POI in � and elements in � (�) are points on � in the construction phase of TI-Oracle.
Detail and example: Algorithm 3 shows the construction phase of TI-Oracle in detail, and the following

illustrates it with an example.

Algorithm 3 TI-Oracle-Construction (�, �, �)

Input: A point cloud � . A set of POIs � . An error parameter � .

Output: A set of boundary points �. A containing point map table�cont. A boundary point map table�boun. A belonging

point map table�belo. An intra-path map table�intra-path. An inter-path map table�inter-path. An inter-endpoint map table

�inter-end.

1: Project � in the 2D plane, and build a Voronoi diagram in Euclidean space using the grid-based 2D point cloud and �

with the sweep line algorithm to generate a set of Voronoi cells

2: Project the partition cells in the 2D plane back to the 3D space to obtain the partition cells of �

3: � ← the boundary points,�cont ← ∅, �boun ← ∅, �belo ← ∅, �intra-path ← ∅, �inter-path ← ∅, �inter-end ← ∅, �cout ← ∅
4: for each POI � ∈ � do

5: value1 ← ∅, value2 ← ∅
6: for each point � on � do

7: if � is a point that belongs to the partition cell corresponding to � then

8: value1 ← value1 ∪ {�}
9: if � is a boundary point of the partition cell corresponding to � then

10: value2 ← value2 ∪ {�}
11: key← �,�cont ← �cont ∪ {key, value1},�boun ← �boun ∪ {key, value2}
12: for each point � on � such that � ∉ � do

13: for each POI � ∈ � such that � belongs to the partition cell corresponding to � do

14: key← �, value← � ,�belo ← �belo ∪ {key, value}
15: for each POI � ∈ � do

16: � (�) ← retrieved from�cont using � as key ∪ retrieved from�boun using � as key

17: calculate the exact shortest paths passing on � from � to each point in � (�) simultaneously using algorithm FastFly

18: for each point � ∈ � (�) do
19: key← ⟨�, �⟩, value← Π

∗ (�, � |�),�intra-path ← �intra-path ∪ {key, value}
20: {�inter-path, �inter-end} ← RC-Oracle-Construction (�, �)

21: return �,�cont,�boun,�belo,�intra-path,�inter-path and�inter-end

(1) Partition cells calculation and initialization (lines 1-3): In Figures 10 (b) and (c), we obtain a set of partition
cells. In Figure 10 (d), there are ive partition cells in diferent colors.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 27

(2)�cont,�boun and�belo calculation (lines 4-14): In Figure 10 (d), � is a point (resp. �, � are two points) on� that
belongs to the partition cell corresponding to � (resp. �). �, ℎ are two boundary points (resp. � is a boundary point)
of the partition cell corresponding to � (resp. �). � belongs to (resp. �, � belong to) the partition cell corresponding
to � (resp. �). So, we have�cont,�boun and�belo in Figure 10 (e).

(3) Intra-paths calculation (lines 15-19): In Figure 10 (d), for POI �, � (�) = {� , �, ℎ, . . . }. For each POI �, �, �, �, � ,
we calculate intra-paths in green lines using algorithm FastFly, and store the key-value pairs in �intra-path in
Figure 10 (f).

(4) Inter-paths calculation (line 20): In Figure 10 (g), we regard boundary points as POIs in RC-Oracle to calculate
inter-paths in blue lines, and store the output in�inter-path and�inter-end in Figure 10 (h).

5.2.3 Implementation Details of TI-Oracle (Shortest Path uery Phase). We give the shortest path query
phase of TI-Oracle.

Notation: Given a source �, we re-use the notation � (�) as in the construction phase of RC-Oracle, but � and
elements in � (�) are points on � in the shortest path query phase of TI-Oracle.

Detail and example: Algorithm 4 shows the shortest path query phase of TI-Oracle in detail, and the following
illustrates it with an example.

Algorithm 4 TI-Oracle-Query (�, �, �, �, �,�cont, �boun, �belo, �intra-path, �inter-path, �inter-end)

Input: A point cloud� . A set of POIs � . A source � that is any point on� . A destination � that is a POI in � . A set of boundary

points �, the containing point map table�cont. A boundary point map table�boun. A belonging point map table�belo. An

intra-path map table�intra-path. An inter-path map table�inter-path. An inter-endpoint map table�inter-end.

Output: An updated intra-path map table�intra-path. The shortest path ΠTI-Oracle (�, � |�) between � and � passing on � .

1: if ⟨�, �⟩ ∈ �intra-path .key then

2: Use ⟨�, �⟩ to retrieve Π∗ (�, � |�) as ΠTI-Oracle (�, � |�)
3: else if ⟨�, �⟩ ∉ �intra-path .key then

4: �� ← ∅, �� ← ∅
5: if � ∈ �belo .��� then

6: � ← retrieved from�belo using � as key

7: � (�) ← retrieved from�cont using � as key (except �) ∪ retrieved from�boun using � as key

8: Calculate the exact shortest paths passing on� from � to each point in � (�) simultaneously using algorithm FastFly

9: for each point � ∈ � (�) such that ⟨�, �⟩ ∉ �intra-path .key do

10: key← ⟨�, �⟩, value← Π
∗ (�, � |�),�intra-path ← �intra-path ∪ {key, value}

11: �� ← retrieved from�boun using � as key

12: else if � ∈ � (resp. � ∈ �) then
13: �� ← {�} (resp. retrieved from�boun using � as key)

14: if � ∈ � (resp. � ∈ �) then
15: �� ← {�} (resp. retrieved from�boun using � as key)

16: Calculate ΠTI-Oracle (�, � |�) by concatenating Π∗ (�, �′ |�), Πinter-path (�′, � ′ |�) and Π∗ (� ′, � |�) such that |ΠTI-Oracle (�, � |�) | =
min∀�′∈�� ,∀� ′∈�� [|Π∗ (�, �′ |�) | + |Πinter-path (�′, � ′ |�) | + |Π∗ (� ′, � |�) |]

17: Π
∗ (�, �′ |�) and Π

∗ (� ′, � |�) are retrieved from�intra-path using ⟨�, �′⟩ and ⟨� ′, �⟩ as key, Πinter-path (�′, � ′ |�) is calculated
by the shortest path query phase of RC-Oracle using �′, � ′,�inter-path and�inter-end

18: return �intra-path and ΠTI-Oracle (�, � |�)

(1) Same partition cell (lines 1-2): In Figures 10 (d) and (f), given � as a source that is not a POI, and � as a
destination that is a POI, since ⟨�, �⟩ ∈ �intra-path .key, we directly retrieve Π∗ (�, � |�).

(2) Diferent partition cell (lines 3-17): In Figures 10 (i) and (j), given � as a source that is not a POI, and � as a
destination that is a POI, since ⟨�, �⟩ ∉ �intra-path.key, there are two steps.

ACM Trans. Datab. Syst.

28 • Y. Yan and R. Chi-Wing Wong

(i) Intra-paths calculation (lines 5-15): In Figures 10 (e), (i) and (j), � ∈ �belo .key, we use key � to retrieve the
POI � in�belo, use key � to retrieve { �, . . . } (except �) in�belo and {�, . . . } in�boun, so we have � (�) = {�, �, . . . }.
We calculate intra-paths in orange lines using algorithm FastFly, and store the key-value pairs in �intra-path

in Figure 10 (j). In Figure 10 (i), we have a set of red points �� = {�, . . . } around � , and a set of red points
�� = {�,ℎ, . . . } around �. If � = � ∈ �, then �� = {�}. If � = � ∈ � , then �� = {�, . . . }. If � = ℎ ∈ �, then �� = {ℎ}.

(ii) Shortest path query (lines 16-17): In Figure 10 (k), we use intra-paths Π∗ (�, ℎ |�) and Π
∗ (�, � |�) in green and

orange lines, and the inter-path Πinter-path (ℎ, � |�) = Π
∗ (ℎ, � |�) in blue line to approximate ΠTI-Oracle (�, � |�).

5.2.4 ProximityueryAlgorithms using TI-Oracle. We introduce the key idea of proximity query algorithms
using TI-Oracle. Figure 9 shows an overview. Given � , a query object �, a set of �′ target objects � on � , a value
� in kNN query and a value � in range query, we can answer kNN and range queries using TI-Oracle. In the
A2P query, there are two cases. (1) The query object is any point on � , and the target objects are POIs in � . (2)
The query object is a POI in � , and the target objects are any point on � . For both cases, the proximity query
algorithms using TI-Oracle are the same. Similarly to RC-Oracle, a naive algorithm performs the shortest path
query �′ times with � as a source and performs a linear scan on the results. Then, it returns all shortest paths
passing on � from � to its � nearest target objects of � or target objects whose distance to � is at most � . We also
propose an eicient algorithm for it. Intuitively, when we perform the linear scan using the shortest path query
phase of TI-Oracle, we use the shortest path query phase of RC-Oracle to ind an inter-path between the same
pair of boundary points more than once. One such query only needs � (1) time. But, if the exact shortest path
passing on � between this pair of boundary points is not stored in�inter-path, the experimental running time is
increased. Since we need to search in�inter-end, and again in�inter-path for path appending. To handle this, if this
happens, after we ind such an inter-path using the shortest path query phase of RC-Oracle, we use an additional
table to store it. So, when we need this inter-path again later, we can directly return the result in this additional
table for time-saving. Then, we give the notation, detail and example (using kNN query with � = 1).
Notation: Let � ′

inter-path
be an additional inter-path map table similar to �inter-path. But, �

′
inter-path

not only

stores the exact inter-paths, but also stores inter-paths returned by RC-Oracle with �inter-path and �inter-end as
input. In Figure 10 (g),�inter-path only stores 6 exact inter-paths in blue lines with ℎ as a source. But, apart from
these,� ′

inter-path
also stores the inter-path between � and � .

Detail and example: We perform a linear scan on the shortest path query result between � and each object
in � . Then, we obtain kNN or range query result. In the A2P query, there are two cases for the query object
and target objects. Without loss of generality, we answer the proximity query with the query object being any
point on � , and the target objects being POIs in � . In Figure 10 (i) - (j), given � as the query object, we perform
a linear scan on the shortest path query result between � and each target object in � . The kNN result stores
{Π(�, � |�)}. For each shortest path query, we follow Algorithm 4, there is only one change in line 17. We irst
initialize� ′

inter-path
to be empty. For inding Πinter-path (�′, � ′ |�), we irst search in� ′

inter-path
. There are two cases.

(1) Inter-path retrieval by �inter-path and �inter-end: If ⟨�′, � ′⟩ ∉ � ′
intra-path

.key, we calculate Πinter-path (�′, � ′ |�)
by the shortest path query phase of RC-Oracle using �′, � ′, �inter-path and �inter-end. We store ⟨�′, � ′⟩ as key
and Πinter-path (�′, � ′ |�) as value in � ′

inter-path
. In Figures 10 (f) - (h), suppose that � ′

intra-path
is empty. Given �, � ,

�inter-path and�inter-end, Πinter-path (�, � |�) is approximated by Π
∗ (�, ℎ |�) and Π

∗ (ℎ, � |�). We store ⟨�, �⟩ as key and
Πinter-path (�, � |�) as value in� ′

inter-path
.

(2) Inter-path retrieval by � ′
inter-path

: If ⟨�′, � ′⟩ ∈ � ′
intra-path

.key, we use ⟨�′, � ′⟩ to retrieve Πinter-path (�′, � ′ |�)
in � ′

inter-path
. In Figure 10 (g), we may need to ind the inter-path between � and � again. But, since ⟨�, �⟩ ∈

� ′
intra-path

.key, we can directly use one table� ′
inter-path

to retrieve Πinter-path (�, � |�), without searching in two tables

�inter-path and�inter-end.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 29

5.2.5 Theoretical Analysis about TI-Oracle. We show some theoretical analysis.
(1) TI-Oracle: The analysis of TI-Oracle is in Theorem 5.1.

Theorem 5.1. The oracle construction time, oracle size and shortest path query time of TI-Oracle are � (� log�
�
+

�� + � log�), � (�
�
) and � (1), respectively. It always have |ΠTI-Oracle (�, � |�) | ≤ (1 + �) |Π∗ (�, � |�) | for any point �

on � and any POI � in � .

Proof. Firstly, we show the oracle construction time. (i) In partition cells calculation step, it needs � (� log�)
time. Since there are � POIs and we use the sweep line algorithm [18] that runs in � (� log�) time to construct
them. (ii) In�cont,�boun and�belo calculation step, it needs� (��) time. Since there are � points and � POIs (i.e.,
partition cells), for each point, we need to check which partition cell it belongs to. (iii) In intra-paths calculation

step, it needs � (�) time. Since we use � (�) POIs as sources to run algorithm FastFly for calculating intra-paths,
where each algorithm FastFly needs � (1) time (the destination boundary points are close to their corresponding

POI). (iv) In inter-paths calculation step, it needs � (� log�
�
) time. Since there are at most � (�) boundary points

and we use RC-Oracle to calculate inter-paths, we just need to change � to � in the oracle construction time of

RC-Oracle. (v) So, the oracle construction time is � (� log�
�
+ �� + � log�).

Secondly, we show the oracle size. (i) For�cont,�bond,�belo and�intra-path, their sizes are all � (�) since there
are � points on � . (ii) For�inter-end and�inter-end, their sizes are � (�) and � (��), respectively. Since there are at
most � (�) boundary points,�inter-end and�inter-end correspond to�end and�end in RC-Oracle, we just need to
change � to � for these two tables in RC-Oracle. (iii) So, the oracle size is � (�

�
).

Thirdly, we show the shortest path query time. (i) If Π∗ (�, � |�) ∈ �intra-path, the shortest path query time is
� (1). (ii) If Π∗ (�, � |�) ∉ �intra-path, we run algorithm FastFly to calculate intra-paths in � (1) time, and run the
shortest path query phase of RC-Oracle to calculate inter-paths in � (1) time. Thus, the shortest path query time
of TI-Oracle is � (1).
Fourthly, we show the error bound. Given � and � , let �′ and � ′ be the boundary points of the partition

cell that � and � belong to, such that we concatenate Π
∗ (�, �′ |�), Πinter-path (�′, � ′ |�) and Π

∗(� ′, � |�) to calcu-
late ΠTI-Oracle (�, � |�). Let � and � be the boundary points of the partition cell that � and � belong to, such
that they lie on Π

∗ (�, � |�). We have |ΠTI-Oracle (�, � |�) | = |Π∗ (�, �′ |�) | + |Πinter-path (�′, � ′ |�) | + |Π∗ (� ′, � |�) | ≤
|Π∗ (�, � |�) | + |Πinter-path (�, � |�) | + |Π∗ (�, � |�) | ≤ |Π∗ (�, � |�) | + (1 + �) |Π∗ (�, � |�) | + |Π∗ (�, � |�) | ≤ (1 +
�) |Π∗ (�, � |�) | + (1 + �) |Π∗ (�, � |�) | + (1 + �) |Π∗ (�, � |�) | = (1 + �) |Π∗ (�, � |�) |. The irst equation is because
ΠTI-Oracle (�, � |�) is calculated by the Π∗ (�, �′ |�), Πinter-path (�′, � ′ |�) and Π

∗ (� ′, � |�). The second inequality is be-
cause �′ and � ′ are the boundary points that result in the shortest distance of ΠTI-Oracle (�, � |�). The third inequality
is because |Πinter-path (�, � |�) | ≤ (1 + �) |Π∗ (�, � |�) |, i.e., the error bound of RC-Oracle for the inter-path. The
fourth inequality is because |Π∗ (�, � |�) | ≤ (1 + �) |Π∗ (�, � |�) | and |Π∗ (�, � |�) | ≤ (1 + �) |Π∗(�, � |�) |. The ifth
inequality is because � and � are the boundary points that result in the shortest distance of Π∗ (�, � |�). □

(2) Proximity query algorithms: We show the query time and error rate of kNN and range queries using
TI-Oracle in Theorem 5.2.

Theorem 5.2. The query time and error rate of both the kNN and range queries by using TI-Oracle are � (�′) and
(1 + �), respectively.
Proof Sketch. The query time is due to the usage of the shortest path query phase for �′ times. The error rate

is due to its deinition and the error of TI-Oracle. □

5.3 TI-Oracle-A2A and Its Proximity uery Algorithms

5.3.1 Key Idea of TI-Oracle-A2A. We introduce the key idea of the eicient adaptation from TI-Oracle to

TI-Oracle-A2A. In the oracle construction phase, since no POI is given, we randomly select some points (e.g.,
√
�

ACM Trans. Datab. Syst.

30 • Y. Yan and R. Chi-Wing Wong

points) as POIs. Then, we follow the same oracle construction phase as TI-Oracle to construct TI-Oracle-A2A. In
the shortest path query phase, given any pair of points � and � on � , we follow the same shortest path query
phase as TI-Oracle. The only diference is that we use the SSAD algorithm twice for both � and � as sources to
calculate intra-paths.

5.3.2 Proximity uery Algorithms using TI-Oracle-A2A. Recall that there is a query object � and a set of
�′ target objects � on � . In the A2A query, the query object is any point on � , and the target objects are any
point on � . Our proximity query algorithms using TI-Oracle-A2A are similar to using TI-Oracle.

5.3.3 Theoretical Analysis about TI-Oracle-A2A. We show some theoretical analysis.
(1) TI-Oracle-A2A: The analysis of TI-Oracle-A2A is in Theorem 5.3.

Theorem 5.3. The oracle construction time, oracle size and shortest path query time of TI-Oracle-A2A are

� (� log�
�
+ �
√
� +

√
� log

√
�), � (�

�
) and � (1), respectively. It always have |ΠTI-Oracle-A2A (�, � |�) | ≤ (1 +

�) |Π∗ (�, � |�) | for any pair of points � and � on � .

Proof. Compared with TI-Oracle, in the oracle construction time and oracle size, we change � to
√
� since

TI-Oracle-A2A selects
√
� points as POIs. In the error bound, we change łany point � on � and any POI � in �ž to

łany pair of points � and � on �ž. The others are the same as TI-Oracle. □

(2) Proximity query algorithms: We show the query time and error rate of kNN and range queries using
TI-Oracle-A2A in Theorem 5.4.

Theorem 5.4. The query time and error rate of both the kNN and range queries by using TI-Oracle-A2A are� (�′)
and (1 + �), respectively.
Proof Sketch. The proof is the same as TI-Oracle. □

6 Empirical Studies

6.1 Experimental Setup

We conducted the experiments on a Linux machine with 2.2 GHz CPU and 512GB memory with both point clouds
and TIN s as input. All algorithms were implemented in C++. Our experimental setup generally follows the setups
in the literature [27, 28, 45, 46, 52, 53].

6.1.1 Datasets. (1) Point cloud datasets: We conducted our experiment based on 34 (= 5+5+24) real point cloud
datasets in Table 4, where the subscript � means a point cloud. For BH� and EP� datasets, they are represented
as a point cloud with 8km × 6km covered region. For GF� , LM� and RM� , we irst obtained the satellite model
from Google Earth [5] with 8km × 6km covered region, and then used Blender [1] to generate the point cloud.
These ive original datasets have a resolution of 10m × 10m [41, 45, 46, 52, 53]. We extracted 500 POIs using
OpenStreetMap [45, 46] for these datasets in the P2P query. For small-version datasets, we use the same region of
the original datasets with a (lower) resolution of 70m × 70m and the dataset generation procedure in [46, 52, 53]
to generate them. In addition, we have six sets of multi-resolution datasets with diferent numbers of points
generated similarly. (2) TIN datasets: We triangulate [13] 34 point cloud datasets and generate another 34 TIN
datasets, and use � as the subscript. Storing a point cloud with 2.5M points needs 39MB, but storing a TIN

converted from this point cloud needs 170MB.

6.1.2 Algorithms. (1) To solve our problem on point clouds, we adapted existing algorithms on TIN s, by
converting the given point clouds to TIN s via triangulation [13] so that the existing algorithms could be performed.
Their algorithm names are appended by ł-Adaptž. We have 4 on-the-ly algorithms. (i) DIO-Adapt [16, 47]: the
best-known adapted TIN exact on-the-ly shortest surface path query algorithm. (ii) ESP-Adapt [27, 52]: the

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 31

best-known adapted TIN approximate on-the-ly shortest surface path query algorithm. (iii) DIJ-Adapt [28]:
the best-known adapted TIN approximate on-the-ly shortest network path query algorithm. (iv) FastFly: our
algorithm. We have 13 oracles. (v) SE-Oracle-Adapt [45, 46]: the best-known adapted TIN oracle for the P2P
query on a point cloud. (vi) UP-Oracle-Adapt [56]: adapted TIN oracle for the P2P query on a point cloud. (vii)
EAR-Oracle-Adapt [26]: the best-known adapted TIN oracle for both the A2P and A2A queries on a point cloud.
(viii) RC-Oracle-Naive: the naive version of RC-Oracle without shortest paths approximation step for the P2P query
on a point cloud. (ix) RC-Oracle: the oracle for the P2P query on a point cloud proposed in the previous conference
paper [53]. (x) SE-Oracle-Adapt-A2A: the adapted SE-Oracle-Adapt (by placing POIs on faces of the converted TIN

of the point cloud, see more details in [45, 46]) for the A2A query on a point cloud. (xi) UP-Oracle-Adapt-A2A:
the adapted UP-Oracle-Adapt in a similar way of SE-Oracle-Adapt-A2A for the A2A query on a point cloud. (xii)
RC-Oracle-Naive-A2A: the adapted RC-Oracle-Naive in a similar way of RC-Oracle-A2A for the A2A query on
a point cloud. (xiii) RC-Oracle-A2A: the oracle for the A2A query on a point cloud proposed in the previous
conference paper [53]. (xiv, xv & xvi) RC-Oracle-A2P-SmCon, RC-Oracle-A2P-SmQue and TI-Oracle: the oracles for
the A2P query on a point cloud proposed in this journal paper. (xvii) TI-Oracle-A2A: the oracle for the A2A query
on a point cloud proposed in this journal paper.

(2) To solve the existing problem on TIN s, we adapted our algorithms on point clouds, by converting the given
TIN s to point clouds so that our algorithms could be performed. This involves regarding the vertices of the TIN
as the points of the point cloud. For AR2P and AR2AR queries, we also take the additional step in Section 4.6.
Our algorithm names are appended by ł-Adaptž. Similarly, we have 4 on-the-ly algorithms. (i) DIO [16, 47]. (ii)
ESP [27, 52]. (iii) DIJ [28]. (iv) FastFly-Adapt. We have 13 oracles. (v) SE-Oracle [45, 46]. (vi) UP-Oracle [56]. (vii)
EAR-Oracle [26]. (viii) RC-Oracle-Naive-Adapt. (ix) RC-Oracle-Adapt. (x) SE-Oracle-AR2AR. (xi) UP-Oracle-Adapt-
AR2AR. (xii) RC-Oracle-Naive-Adapt-AR2AR. (xiii) RC-Oracle-Adapt-AR2AR. (xiv) RC-Oracle-Adapt-AR2P-SmCon.
(xv) RC-Oracle-Adapt-AR2P-SmQue. (xvi) TI-Oracle-Adapt. (xvii) TI-Oracle-Adapt-AR2AR.

6.1.3 uery generation. We conducted all proximity queries, i.e., (1) shortest path query, and (2 & 3) all objects
kNN and range query. (1) For the shortest path query, we issued 100 query instances. For each instance, we
randomly chose a source and a destination. They can be a POI, any point on a point cloud or TIN, depending on
the P2P, A2P, A2A, AR2P or AR2AR query types. The average, minimum and maximum results were reported.
In the experimental result igures, the vertical bar and the points mean the minimum, maximum and average
results. (2 & 3) For all objects kNN and range query, we perform the proximity query algorithms for our oracles,
and a linear scan for other baselines (as described in [46]) using all objects as query objects. We randomly select
500 objects on the point cloud or TIN. They can be a POI, any point on a point cloud or TIN, depending on the
P2P, A2P, A2A, AR2P or AR2AR query types. Since we perform linear scans or use the calculated distance stored
in�path,�intra-path or�inter-path for proximity query, the value of � and � will not afect their query time, we set
� = 3 and � = 1km.

6.1.4 Factors and measurements. We studied three factors. (1) � (i.e., the error parameter). (2) � (i.e., the
number of POIs). (3)� (i.e., the number of points or vertices in a point cloud or TIN).We used ninemeasurements to
evaluate algorithm performance. (1) Oracle construction time. (2)Memory consumption (i.e., the space consumption
when running the algorithm). (3) Oracle size. (4) Query time (i.e., the shortest path query time). (5 & 6) kNN and

range query time (i.e., all objects kNN and range query time). (7) Distance error (i.e., the error of the distance
returned by the algorithm compared with the exact distance). (8 & 9) kNN and range query error (i.e., the error
rate of the kNN and range query deined in Section 4.2.5).

ACM Trans. Datab. Syst.

32 • Y. Yan and R. Chi-Wing Wong

6.2 Experimental Results for TINs

We irst study proximity queries on TIN s (studied by previous studies [26, 45, 46]) to justify why our proximity
queries on point clouds are useful. We have the following settings. (1) The distance of the path calculated by DIO

is used for distance error calculation since the path is the exact shortest surface path passing on the TIN. (2) For
the P2P query on a TIN, we compared the following algorithms. We compared SE-Oracle, UP-Oracle, EAR-Oracle,
RC-Oracle-Naive-Adapt, RC-Oracle-Adapt, DIO, ESP, DIJ and FastFly-Adapt on small-version datasets. There are
50 POIs by default. We compared RC-Oracle-Adapt, DIO, ESP, DIJ and FastFly-Adapt on original datasets since
the rest have expensive oracle construction time. There are 500 POIs by default. (3) For the AR2P and AR2AR
queries on a TIN, we compared the following algorithms. We compared SE-Oracle-AR2AR, UP-Oracle-AR2AR,
EAR-Oracle, RC-Oracle-Naive-Adapt-AR2AR, RC-Oracle-Adapt-AR2AR, RC-Oracle-Adapt-AR2P-SmCon, RC-Oracle-
Adapt-AR2P-SmQue, TI-Oracle-Adapt, TI-Oracle-Adapt-AR2AR and FastFly-Adapt on small-version datasets. There
are 50 POIs for the AR2P query by default. We compared RC-Oracle-Adapt-AR2AR, RC-Oracle-Adapt-AR2P-SmCon,
RC-Oracle-Adapt-AR2P-SmQue, TI-Oracle-Adapt, TI-Oracle-Adapt-AR2AR and FastFly-Adapt on original datasets
since the rest are not feasible on original datasets. There are 500 POIs for the AR2P query by default.

6.2.1 Baseline comparisons. We study the efect of � and � for the P2P, AR2P and AR2AR queries on a TIN
here. We study the efect of � for these queries in our technical report [54].
Efect of � for the P2P query on a TIN . In Figure 13, we tested 6 values of � from {0.05, 0.1, 0.25, 0.5, 0.75,

1} on BH� -small dataset by setting � to be 10k and � to be 50 for baseline comparisons for the P2P query on a
TIN. Although a TIN is given as input, RC-Oracle-Adapt performs better than all other oracles in terms of the
oracle construction time, oracle size and shortest path query time. Although FastFly-Adapt needs to convert a
point cloud from the given TIN, the shortest path query time of FastFly-Adapt is 100 times smaller than that of
DIO. Since the query region of the path calculated by FastFly-Adapt is smaller than that of DIO. The distance
error of FastFly-Adapt (i.e., 0.002) is very small compared with DIO (i.e., without error), and much smaller than
that of DIJ (i.e., 0.1). This means that the shortest distance on a point cloud (resp. the shortest network distance
on a TIN) is 1.002 (resp. 1.1) times larger than the shortest surface distance on a TIN. The kNN and range query
error are all equal to 0 (due to the small distance error), so their results are omitted.

SE-Oracle
UP-Oracle

EAR-Oracle

RC-Oracle-Naive-Adapt
RC-Oracle-Adapt

DIO

ESP
Dijk

FastFly-Adapt

10
-2

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

ε

10
-2

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(b)

M
e

m
o

ry
 (

M
B

)

ε

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(c)

S
iz

e
 (

M
B

)

ε

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(d)

Q
u

e
ry

 T
im

e
 (

m
s
)

ε

0

0.02

0.04

0.06

0.08

0.1

0.12

0
0.

2
0.

4
0.

6
0.

8 1

(e)

D
is

ta
n

c
e

 E
rr

o
r

ε

Fig. 13. Baseline comparisons (efect of � on BH� -small TIN dataset for P2P query)

Efect of � for the P2P query on a TIN . In Figure 14, we tested 5 values of � from {50, 100, 150, 200, 250} on
EP� dataset by setting � to be 10k and � to be 0.1 for baseline comparisons for the P2P query on a TIN. In Figure 14
(a), when � increases, the construction time of all oracles increases. In Figure 14 (b), when � increases, the memory
consumption of RC-Oracle-Adapt exceeds that of DIJ and FastFly-Adapt. This is because RC-Oracle-Adapt is an
oracle that is afected by �, it needs more memory consumption during the oracle construction to calculate more

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 33

paths among these POIs when � increases. But, DIJ and FastFly-Adapt are on-the-ly algorithms which are not
afected by �, their memory consumption only measures the space consumption for calculating one path.

SE-Oracle
UP-Oracle

EAR-Oracle

RC-Oracle-Naive-Adapt
RC-Oracle-Adapt

DIO

ESP
Dijk

FastFly-Adapt

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

50 10
0

15
0

20
0

25
0

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

POI number

10
-2

10
-1

10
0

10
1

10
2

10
3

50 10
0

15
0

20
0

25
0

(b)

M
e
m

o
ry

 (
M

B
)

POI number

10
-1

10
0

10
1

10
2

50 10
0

15
0

20
0

25
0

(c)

S
iz

e
 (

M
B

)

POI number

10
0

10
1

10
2

10
3

10
4

10
5

10
6

50 10
0

15
0

20
0

25
0

(d)

k
N

N
 Q

u
e
ry

 T
im

e
 (

m
s
)

POI number

0

0.02

0.04

0.06

0.08

0.1

0.12

50 10
0

15
0

20
0

25
0

(e)

D
is

ta
n
c
e
 E

rr
o
r

POI number

Fig. 14. Baseline comparisons (efect of � on EP� -small TIN dataset for P2P query)

Efect of � for the AR2P query on a TIN . In Figure 15, we tested 6 values of � from {0.05, 0.1, 0.25, 0.5, 0.75, 1}
on BH� -small dataset by setting � to be 10k and � to be 50 for baseline comparisons for the AR2P query on a TIN.
The oracle construction time, memory usage and oracle size of RC-Oracle-Adapt-AR2P-SmCon are the smallest in
all oracles since it has the same oracle construction process as RC-Oracle-Adapt. RC-Oracle-Adapt-AR2P-SmCon

performs better than FastFly-Adapt, since it can terminate earlier when using FastFly-Adapt in the shortest path
query phase. But, its shortest path query time is larger than other oracles, so it performs well in the case of fewer
proximity queries. The oracle construction time and shortest path query time of RC-Oracle-Adapt-AR2P-SmQue

and TI-Oracle-Adapt are also very small. Since they terminate algorithm FastFly-Adapt earlier during oracle
construction and store tight information in the oracles.

SE-Oracle-AR2AR
UP-Oracle-AR2AR

EAR-Oracle
RC-Oracle-Naive-Adapt-AR2AR

RC-Oracle-Adapt-AR2AR

RC-Oracle-Adapt-AR2P-SmCon
RC-Oracle-Adapt-AR2P-SmQue

TI-Oracle-Adapt
TI-Oracle-Adapt-AR2AR

FastFly-Adapt

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

ε

10
-210
-110
010
110
210
310
410
510
6

0
0.

2
0.

4
0.

6
0.

8 1

(b)

M
e

m
o

ry
 (

M
B

)

ε

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0
0.

2
0.

4
0.

6
0.

8 1

(c)

S
iz

e
 (

M
B

)

ε

10
-3

10
-2

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(d)

Q
u

e
ry

 T
im

e
 (

m
s
)

ε

0
0.002
0.004
0.006
0.008
0.01

0.012

0
0.

2
0.

4
0.

6
0.

8 1

(e)

D
is

ta
n

c
e

 E
rr

o
r

ε

Fig. 15. Baseline comparisons (efect of � on BH� -small TIN dataset for AR2P query)

Efect of � for the AR2P query on a TIN . In Figure 16, we tested 5 values of � from {50, 100, 150, 200, 250}
on EP� dataset by setting � to be 10k and � to be 0.1 for baseline comparisons for the AR2P query on a TIN. When
� < 100 (resp. � ≥ 100), the oracle construction time of RC-Oracle-Adapt-AR2P-SmQue is smaller (resp. larger)
than that of TI-Oracle-Adapt. Thus, the former (resp. latter) performs well when the density of POIs is high (resp.
low).
AR2AR query on a TIN . In Figures 15 and 16, we also compared oracles for the AR2AR query on a TIN.

SE-Oracle-AR2AR, UP-Oracle-AR2AR, EAR-Oracle, RC-Oracle-Naive-Adapt-AR2AR, RC-Oracle-Adapt-AR2AR and

ACM Trans. Datab. Syst.

34 • Y. Yan and R. Chi-Wing Wong

SE-Oracle-AR2AR
UP-Oracle-AR2AR

EAR-Oracle
RC-Oracle-Naive-Adapt-AR2AR

RC-Oracle-Adapt-AR2AR

RC-Oracle-Adapt-AR2P-SmCon
RC-Oracle-Adapt-AR2P-SmQue

TI-Oracle-Adapt
TI-Oracle-Adapt-AR2AR

FastFly-Adapt

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

50 10
0

15
0

20
0

25
0

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

POI number

10
-210
-110
010
110
210
310
410
510
6

50 10
0

15
0

20
0

25
0

(b)

M
e
m

o
ry

 (
M

B
)

POI number

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

50 10
0

15
0

20
0

25
0

(c)

S
iz

e
 (

M
B

)

POI number

10
0

10
1

10
2

10
3

10
4

10
5

50 10
0

15
0

20
0

25
0

(d)

k
N

N
 Q

u
e
ry

 T
im

e
 (

m
s
)

POI number

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

50 10
0

15
0

20
0

25
0

(e)

D
is

ta
n
c
e
 E

rr
o
r

POI number

Fig. 16. Baseline comparisons (efect of � on EP� -small TIN dataset for AR2P query)

TI-Oracle-Adapt-AR2AR can answer the AR2AR query on a TIN. The last two oracles still perform better than
other oracles in terms of oracle construction time, oracle size and shortest path query time. Since they terminate
algorithm FastFly-Adapt earlier during oracle construction and store tight information in the oracles.

6.3 Experimental Results for Point Clouds

Now, we understand the efectiveness of proximity queries on point clouds. In this section, we then study proximity
queries on point clouds using the algorithms in Table 3. We have the following setting. (1) The distance of the path
calculated by FastFly is used for distance error calculation since the path is the exact shortest path passing on the
point cloud. (2) We compared similar algorithms on small-version or original datasets with the same reasons for
TIN s.

6.3.1 Baseline comparisons. We study the efect of � , � and � for the P2P, A2P and A2A queries on a point
cloud here.
Efect of � for the P2P query on a point cloud. In Figure 17, we tested 6 values of � from {0.05, 0.1, 0.25,

0.5, 0.75, 1} on GF� -small dataset by setting � to be 10k and � to be 50 for baseline comparisons for the P2P
query on a point cloud. The oracle construction time, memory consumption and oracle size of RC-Oracle are
smaller than SE-Oracle-Adapt. Since RC-Oracle has rapid oracle construction advantage, it can terminate algorithm
FastFly earlier with less time and memory, and stores fewer paths. The shortest path query time of RC-Oracle is
smaller than SE-Oracle-Adapt. Since their theoretical values are � (1) and � (ℎ2), respectively. In Figures 17 (a &
b), varying � has a large efect on the oracle construction time and memory consumption of RC-Oracle. When �

increases from 0.05 to 1, their values increase by 5 times. But, due to the log scale used in the experimental igures,
the efect is not obvious. Varying � has a small efect on the oracle construction time and memory consumption
of SE-Oracle-Adapt and EAR-Oracle-Adapt. Since even when � is large, they cannot terminate the SSAD algorithm
earlier for most cases due to their loose criterion for algorithm earlier termination drawback. The shortest path,
kNN and range queries time of RC-Oracle are much smaller than the on-the-ly algorithms. The distance error of
RC-Oracle is close to 0.
Efect of � for the P2P query on a point cloud. In Figure 18, we tested 5 values of � from {500, 1000,

1500, 2000, 2500} on LM� dataset by setting � to be 0.5M and � to be 0.25 for baseline comparisons for the P2P
query on a point cloud. Since RC-Oracle is an oracle, its kNN query time is smaller than on-the-ly algorithms.
Algorithm FastFly runs faster than other TIN on-the-ly algorithms since it calculates the shortest path passing on
a point cloud. Algorithm FastFly calculates neighbors during shortest path calculation, and other TIN on-the-ly

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 35

SE-Oracle-Adapt
UP-Oracle-Adapt

EAR-Oracle-Adapt

RC-Oracle-Naive
RC-Oracle
DIO-Adapt

ESP-Adapt
Dijk-Adapt

FastFly

10
-2

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

ε

10
-2

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(b)

M
e
m

o
ry

 (
M

B
)

ε

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(c)

S
iz

e
 (

M
B

)

ε

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(d)

Q
u
e
ry

 T
im

e
 (

m
s
)

ε

0

0.02

0.04

0.06

0.08

0.1

0.12

0
0.

2
0.

4
0.

6
0.

8 1

(e)

D
is

ta
n
c
e
 E

rr
o
r

ε

Fig. 17. Baseline comparisons (efect of � on GF� -small point cloud dataset for P2P query)

algorithms do so beforehand. But, the point cloud neighbors calculation time is 104 to 106 times smaller than the
shortest path calculation time. Thus, the former time can be neglected.

Efect of � (scalability test) for the P2P query on a point cloud. In Figure 19, we tested 5 values of � from
{0.5M, 1M, 1.5M, 2M, 2.5M} on RM� dataset by setting � to be 500 and � to be 0.25 for baseline comparisons for
the P2P query on a point cloud. The oracle construction time of RC-Oracle is only 80s ≈ 1.3 min for a point cloud
with 2.5M points and 500 POIs, which shows its scalability. The range query time of RC-Oracle is the smallest.

RC-Oracle
DIO-Adapt
ESP-Adapt

Dijk-Adapt
FastFly

0

50

100

150

200

0.5 1 1.5 2 2.5

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

POI number (k)

10
4

10
5

10
6

10
7

10
8

10
9

0.5 1 1.5 2 2.5

(b)

k
N

N
 Q

u
e

ry
 T

im
e

 (
m

s
)

POI number (k)

Fig. 18. Baseline comparisons (efect of �

on LM� point cloud dataset for P2P query)

RC-Oracle
DIO-Adapt

ESP-Adapt
Dijk-Adapt

FastFly

0

20

40

60

80

100

0.5 1 1.5 2 2.5

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

Dataset size (M)

0
20
40
60
80

100
120
140

0.5 1 1.5 2 2.5

(b)

S
iz

e
 (

M
B

)

Dataset size (M)

10
4

10
5

10
6

10
7

10
8

10
9

0.5 1 1.5 2 2.5

(c)

R
a

n
g

e
 Q

u
e

ry
 T

im
e

 (
m

s
)

Dataset size (M)

Fig. 19. Baseline comparisons (efect of � on RM� point cloud

dataset for P2P query)

Efect of � for the A2P query on a point cloud. In Figure 20, we tested 6 values of � from {0.05, 0.1, 0.25, 0.5,
0.75, 1} on GF� -small dataset by setting � to be 10k and � to be 50 for baseline comparisons for the A2P query on
a point cloud. RC-Oracle-A2P-SmCon, RC-Oracle-A2P-SmQue and TI-Oracle perform better than EAR-Oracle-Adapt,
RC-Oracle-A2A and TI-Oracle-A2A. Since EAR-Oracle-Adapt has the loose criterion for algorithm earlier termination

drawback, RC-Oracle-A2A and TI-Oracle-A2A are not designed for the A2P query on a point cloud.
Efect of � for the A2P query on a point cloud. In Figure 21, we tested 5 values of � from {500, 1000,

1500, 2000, 2500} on LM� dataset by setting � to be 0.5M and � to be 0.25 for baseline comparisons for the A2P
query on a point cloud. The oracle construction time, memory usage and oracle size of RC-Oracle-A2P-SmCon

are the smallest in all oracles. RC-Oracle-A2P-SmCon performs better than FastFly. But, its shortest path query
time is larger than other oracles, so it performs well in the case of fewer proximity queries. The reason is the
same as that of RC-Oracle-Adapt-AR2P-SmCon for TIN s. The oracle construction time and shortest path query
time of RC-Oracle-A2P-SmQue and TI-Oracle are also very small. The reason is the same as that of RC-Oracle-
Adapt-AR2P-SmQue and TI-Oracle-Adapt for TIN s. When � < 500 (resp. � ≥ 500), the oracle construction time of

ACM Trans. Datab. Syst.

36 • Y. Yan and R. Chi-Wing Wong

SE-Oracle-Adapt-A2A
UP-Oracle-Adapt-A2A

EAR-Oracle-Adapt
RC-Oracle-Naive-A2A

RC-Oracle-A2A
RC-Oracle-A2P-SmCon
RC-Oracle-A2P-SmQue

TI-Oracle

TI-Oracle-A2A
FastFly

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

ε

10
-210
-110
010
110
210
310
410
510
6

0
0.

2
0.

4
0.

6
0.

8 1

(b)

M
e
m

o
ry

 (
M

B
)

ε

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0
0.

2
0.

4
0.

6
0.

8 1

(c)

S
iz

e
 (

M
B

)

ε

10
-3

10
-2

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(d)

Q
u
e
ry

 T
im

e
 (

m
s
)

ε

0

0.005

0.01

0.015

0.02

0
0.

2
0.

4
0.

6
0.

8 1

(g)

D
is

ta
n
c
e
 E

rr
o
r

ε

Fig. 20. Baseline comparisons (efect of � on GF� -small point cloud dataset for A2P query)

RC-Oracle-A2P-SmQue is smaller (resp. larger) than that of TI-Oracle. Thus, the former (resp. latter) performs well
when the density of POIs is high (resp. low).

Efect of � (scalability test) for the A2P query on a point cloud. In Figure 22, we tested 5 values of �
from {0.5M, 1M, 1.5M, 2M, 2.5M} on RM� dataset by setting � to be 500 and � to be 0.25 for baseline comparisons
for the A2P query on a point cloud. RC-Oracle-A2P-SmCon, RC-Oracle-A2P-SmQue and TI-Oracle are scalable
when � is large.

RC-Oracle-A2A
RC-Oracle-A2P-SmCon
RC-Oracle-A2P-SmQue

TI-Oracle
TI-Oracle-A2A

FastFly

10
1

10
2

10
3

10
4

0.
5 1

1.
5 2

2.
5

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

POI number (k)

10
4

10
5

10
6

0.
5 1

1.
5 2

2.
5

(b)

k
N

N
 Q

u
e

ry
 T

im
e

 (
m

s
)

POI number (k)

Fig. 21. Baseline comparisons (efect of �

on LM� point cloud dataset for A2P query)

RC-Oracle-A2A
RC-Oracle-A2P-SmCon
RC-Oracle-A2P-SmQue

TI-Oracle
TI-Oracle-A2A

FastFly

10
1

10
2

10
3

10
4

10
5

0.
5 1

1.
5 2

2.
5

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

Dataset size (M)

10
2

10
3

10
4

10
5

0.
5 1

1.
5 2

2.
5

(b)

S
iz

e
 (

M
B

)

Dataset size (M)

10
4

10
5

10
6

0.
5 1

1.
5 2

2.
5

(c)

R
a
n
g
e
 Q

u
e
ry

 T
im

e
 (

m
s
)

Dataset size (M)

Fig. 22. Baseline comparisons (efect of � on RM� point cloud

dataset for A2P query)

A2A query on a point cloud. In Figures 20, 21 and 22, we also compared oracles for the A2A query on a point
cloud. SE-Oracle-Adapt-A2A, UP-Oracle-Adapt-A2A, EAR-Oracle-Adapt, RC-Oracle-Naive-A2A, RC-Oracle-A2A and
TI-Oracle-A2A can answer the A2A query on a point cloud. The last two oracles still perform better than the irst
three oracles in terms of oracle construction time, oracle size and shortest path query time.

6.3.2 Ablation study. We further adapt SE-Oracle-Adapt, UP-Oracle-Adapt, EAR-Oracle-Adapt, SE-Oracle-Adapt-
A2A and UP-Oracle-Adapt-A2A to be SE-Oracle-FastFly-Adapt, UP-Oracle-FastFly-Adapt, EAR-Oracle-FastFly-Adapt,
SE-Oracle-FastFly-Adapt-A2A and UP-Oracle-FastFly-Adapt-A2A. It means that we use algorithm FastFly to directly
calculate the shortest path passing on a point cloud without converting to a TIN.
In Figure 23, we tested 6 values of � from {0.05, 0.1, 0.25, 0.5, 0.75, 1} on LM� dataset by setting � to be 0.5M

and � to be 500 for ablation study for the P2P query on a point cloud. We compared SE-Oracle-FastFly-Adapt,
UP-Oracle-FastFly-Adapt, EAR-Oracle-FastFly-Adapt and RC-Oracle. They only difer by the oracle construction.
RC-Oracle performs better than all other oracles.

ACM Trans. Datab. Syst.

Eficient Path Oracles for Proximityueries on Point Clouds • 37

In Figure 24, we tested 6 values of � from {0.05, 0.1, 0.25, 0.5, 0.75, 1} on RM� dataset by setting � to be 0.5M
and � to be 500 for ablation study for the A2P query on a point cloud. We compared SE-Oracle-FastFly-Adapt-A2A,
UP-Oracle-FastFly-Adapt-A2A, EAR-Oracle-FastFly-Adapt, RC-Oracle-A2A, RC-Oracle-A2P-SmCon, RC-Oracle-
A2P-SmQue, TI-Oracle and TI-Oracle-A2A. They only difer by the oracle construction. RC-Oracle-A2P-SmCon,
RC-Oracle-A2P-SmQue and TI-Oracle perform better than all other oracles.
In Figure 24, we also compared oracles for the A2A query on a point cloud. We compared SE-Oracle-FastFly-

Adapt-A2A, UP-Oracle-FastFly-Adapt-A2A, EAR-Oracle-FastFly-Adapt, RC-Oracle-A2A and TI-Oracle-A2A. RC-
Oracle-A2A and TI-Oracle-A2A perform better than all other oracles.

SE-Oracle-FastFly-Adapt
UP-Oracle-FastFly-Adapt

EAR-Oracle-FastFly-Adapt
RC-Oracle

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

ε

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(b)

Q
u

e
ry

 T
im

e
 (

m
s
)

ε

Fig. 23. Ablation study on LM� point cloud

dataset for P2P query

SE-Oracle-FastFly-Adapt-A2A
EAR-Oracle-FastFly-Adapt

RC-Oracle-A2A
RC-Oracle-A2P-SmCon

RC-Oracle-A2P-SmQue
TI-Oracle

TI-Oracle-A2A

10
1

10
2

10
3

10
4

10
5

10
6

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

ε

10
1

10
2

10
3

10
4

10
5

10
6

0
0.

2
0.

4
0.

6
0.

8 1

(b)

S
iz

e
 (

M
B

)

ε

10
4

10
5

0
0.

2
0.

4
0.

6
0.

8 1

(c)

k
N

N
 Q

u
e
ry

 T
im

e
 (

m
s
)

ε

Fig. 24. Ablation study on RM� point cloud dataset for A2P

query

6.3.3 Comparisons with other proximity queries oracles and variation oracles on a point cloud. We
compared SU-Oracle-Adapt [41] (i.e., the oracle designed for the kNN query) and some variations of our oracles
related to SU-Oracle-Adapt in our technical report [54]. Our oracles and variations still outperform other baselines.

6.3.4 Case study (snowfall). We performed a snowfall evacuation case study [34] in Mount Rainier [33] to
evacuate tourists to nearby hotels. The blizzard wreaking havoc across the USA in December 2022 killed more
than 60 lives [32] and one may be dead due to asphyxiation [40] if s/he gets buried in the snow. A human will
be buried in the snow in 2.4 hours2, and the evacuation (i.e., the time of human’s walking from the viewing
platforms to hotels) can be inished in 2.2 hours3. Thus, the calculation of shortest paths is expected to be inished
within 12 min (= 2.4 − 2.2 hours). Due to avalanches, we capture the point cloud dataset after snowfall (i.e., the
point cloud dataset is updated), so the oracle construction time is considered after snowfall.

Consider the P2P query on a point cloud with 2.5M points and 500 POIs (250 viewing platforms and 250 hotels).
The oracle construction time for RC-Oracle and the best-known adapted TIN oracle SE-Oracle-Adapt are 80s ≈
1.3 min and 78,000s ≈ 21.7 hours, respectively. The query time for calculating 10 nearest hotels of each viewing
platform for them are 6s and 75s, respectively. The query time of the same query for FastFly and the best-known
adapted TIN approximate on-the-ly shortest surface path query algorithm ESP-Adapt are 2,000s ≈ 33 min and
80,500s ≈ 22.5 hours, respectively. Thus, only RC-Oracle is suitable since 1.3 min + 6s ≤ 12 min, but 21.7 hours +
75s ≥ 12 min, 33 min ≥ 12 min and 22.5 hours ≥ 12 min.

22.4 hours = 10centimeters×24hours
1meter , since the snowfall rate (i.e., the snow depth in a given time [36, 44]) in Mount Rainier is 1 meter per 24

hours [35], and it becomes diicult to walk and get buried in the snow if the snow is deeper than 10 centimeters [24].
32.2 hours = 11.2km

5.1km/h , since the average distance between the viewing platforms and hotels in Mount Rainier National Park is 11.2km [6], and

the average human walking speed is 5.1 km/h [11].

ACM Trans. Datab. Syst.

38 • Y. Yan and R. Chi-Wing Wong

Consider the A2P query on a point cloud under the same setting. The oracle construction time for TI-Oracle,
RC-Oracle-A2A and the best-known adapted TIN oracle EAR-Oracle-Adapt are 250s ≈ 4.1 min, 42,000 ≈ 11.6 hours
and 10,500,000s ≈ 121 days, respectively. The query time for the same query for them are 11s, 6s and 600s ≈ 10
min. Thus, only TI-Oracle is suitable since 4.1 min + 11s ≤ 12 min, but 11.6 hours + 6s ≥ 12 min and 121 days +
600s ≥ 12 min.

6.3.5 Case study (solar storm). We performed a solar storm evacuation case study [10] for NASA’s Mars 2020
rover (costing USD 2.5 billion [38]). During solar storms, rovers need to ind shortest escape paths quickly from
their current locations (any location) on Mars to shelters (POIs) to avoid damage. The memory size of a rover is
256MB [9]. Consider the A2P query on a point cloud with 250k points and 500 POIs. The oracle construction
time for TI-Oracle and RC-Oracle-A2A are 25s and 4,200 ≈ 1.2 hours, respectively. The oracle size for them are
28MB and 10GB, respectively. Thus, only TI-Oracle is suitable since 28MB ≤ 256MB, but 10GB ≥ 256MB.

6.3.6 Summary. Consider the oracle construction time, oracle size and proximity (e.g., kNN) query time. For
the P2P query on a point cloud with 2.5M points and 500 POIs, these values are 80s ≈ 1.3 min, 50MB and 12.5s for
RC-Oracle, respectively. They are up to 975 times, 30 times and 12 times better than the best-known adapted TIN

oracle SE-Oracle-Adapt for the P2P query on a point cloud, respectively. For the A2P query on a point cloud with
250k points and 500 POIs, these values are 25s, 28MB and 2.2s for TI-Oracle, respectively. They are up to 42,000
times, 10,800 times and 27 times better than the best-known adapted TIN oracle EAR-Oracle-Adapt for the A2P
query on a point cloud, respectively.

7 Conclusion

We propose six eicient shortest path oracles called RC-Oracle, RC-Oracle-A2P-SmCon, RC-Oracle-A2P-SmQue,
RC-Oracle-A2A, TI-Oracle and TI-Oracle-A2A. They can answer (1 + �)-approximate P2P, A2P and A2A shortest
path queries on a point cloud. We also propose eicient proximity query algorithms using these oracles. They can
(1+�)-approximate kNN and range queries on a point cloud. Our six oracles and their proximity query algorithms
have the state-of-the-art performance in terms of the oracle construction time, oracle size and proximity query
time compared with the best-known adapted oracle.

For the future work, we can extend our oracles from a static point cloud to an updated point cloud. Given two
point clouds before and after updates, denoted by �be and �af, respectively, we irst construct an oracle on �be.
After point cloud updates, if �be and �af do not difer a lot, there is no need to construct the oracle on �af from
scratch. We aim to eiciently update the oracle on �af using the previous oracle on �be. Then, we can use the
updated oracle on �af for proximity queries. In snowfall evacuation, due to avalanches, �be is updated and we
need to capture �af after snowfall. We hope to eiciently update the oracle on �af, to answer proximity queries
for life-saving.

Acknowledgements

We are grateful to the anonymous reviewers for their constructive comments. The research is supported in part
by GZSTI16EG24.

References

[1] 2025. Blender. https://www.blender.org

[2] 2025. Cyberpunk 2077. https://www.cyberpunk.net

[3] 2025. Data geocomm. http://data.geocomm.com/

[4] 2025. Dijkstra’s shortest path algorithm using priority queue. https://www.geeksforgeeks.org/dsa/dijkstras-shortest-path-algorithm-

using-priority_queue-stl/

[5] 2025. Google earth. https://earth.google.com/web

ACM Trans. Datab. Syst.

https://www.blender.org
https://www.cyberpunk.net
http://data.geocomm.com/
https://www.geeksforgeeks.org/dsa/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dsa/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://earth.google.com/web

Eficient Path Oracles for Proximityueries on Point Clouds • 39

[6] 2025. Google map. https://www.google.com/maps

[7] 2025. Gunnison national forest. https://gunnisoncrestedbutte.com/visit/places-to-go/parks-and-outdoors/gunnison-national-forest/

[8] 2025. Laramie mountain. https://www.britannica.com/place/Laramie-Mountains

[9] 2025. Mars 2020 mission perseverance rover brains. https://mars.nasa.gov/mars2020/spacecraft/rover/brains/

[10] 2025. NASA’s Maven observes martian light show caused by major solar storm. https://www.nasa.gov/missions/nasas-maven-observes-

martian-light-show-caused-by-major-solar-storm/

[11] 2025. Preferred walking speed. https://en.wikipedia.org/wiki/Preferred_walking_speed

[12] 2025. Robinson mountain. https://www.mountaineers.org/activities/routes-places/robinson-mountain

[13] Haoan Feng, Yunting Song, and Leila De Floriani. 2024. Critical features tracking on triangulated irregular networks by a scale-space

method. In ACM International Conference on Advances in Geographic Information Systems (GIS). 54ś66.

[14] Sainyam Galhotra, Rahul Raychaudhury, and Stavros Sintos. 2024. k-Clustering with comparison and distance oracles. In ACM

International Conference on Management of Data (SIGMOD), Vol. 2. 1ś26.

[15] Paul B Callahan and S Rao Kosaraju. 1995. A decomposition of multidimensional point sets with applications to k-nearest-neighbors

and n-body potential ields. Journal of the ACM (JACM) 42, 1 (1995), 67ś90.

[16] Jindong Chen and Yijie Han. 1990. Shortest paths on a polyhedron. In Symposium on Computational Geometry (SOCG). 360ś369.

[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cliford Stein. 2022. Introduction to algorithms. MIT press.

[18] Mark De Berg. 2000. Computational geometry: algorithms and applications. Springer Science & Business Media.

[19] Ke Deng, Heng Tao Shen, Kai Xu, and Xuemin Lin. 2006. Surface k-nn query processing. In IEEE International Conference on Data

Engineering (ICDE). 78ś78.

[20] Ke Deng and Xiaofang Zhou. 2004. Expansion-based algorithms for inding single pair shortest path on surface. In International Workshop

on Web and Wireless Geographical Information Systems (WWGIS). 151ś166.

[21] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Qing Liu, Kai Xu, and Xuemin Lin. 2008. A multi-resolution surface distance model for k-nn

query processing. The VLDB Journal (VLDBJ) 17, 5 (2008), 1101ś1119.

[22] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 1 (1959), 269ś271.

[23] David Eriksson and Evan Shellshear. 2016. Fast exact shortest distance queries for massive point clouds. Graphical Models 84 (2016),

28ś37.

[24] Fresh Of The Grid. 2025. Winter hiking 101: everything you need to know about hiking in snow. https://www.freshofthegrid.com/winter-

hiking-101-hiking-in-snow/

[25] Anupam Gupta, Robert Krauthgamer, and James R Lee. 2003. Bounded geometries, fractals, and low-distortion embeddings. In IEEE

Symposium on Foundations of Computer Science (SFCS). 534ś543.

[26] Bo Huang, Victor Junqiu Wei, Raymond Chi-Wing Wong, and Bo Tang. 2023. Ear-oracle: on eicient indexing for distance queries

between arbitrary points on terrain surface. In ACM International Conference on Management of Data (SIGMOD), Vol. 1. 1ś26.

[27] Manohar Kaul, Raymond Chi-Wing Wong, and Christian S Jensen. 2015. New lower and upper bounds for shortest distance queries on

terrains. In International Conference on Very Large Data Bases (VLDB), Vol. 9. 168ś179.

[28] Manohar Kaul, Raymond Chi-Wing Wong, Bin Yang, and Christian S Jensen. 2013. Finding shortest paths on terrains by killing two

birds with one stone. In International Conference on Very Large Data Bases (VLDB), Vol. 7. 73ś84.

[29] Mark Lanthier, Anil Maheshwari, and J-R Sack. 2001. Approximating shortest paths on weighted polyhedral surfaces. Algorithmica 30, 4

(2001), 527ś562.

[30] Lian Liu and Raymond Chi-Wing Wong. 2011. Finding shortest path on land surface. In ACM International Conference on Management of

Data (SIGMOD). 433ś444.

[31] Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete geodesic problem. SIAM Journal on Computing

(JOC) 16, 4 (1987), 647ś668.

[32] Mithil Aggarwal. 2022. More than 60 killed in blizzard wreaking havoc across U.S. https://www.cnbc.com/2022/12/26/death-toll-rises-to-

at-least-55-as-freezing-temperatures-and-heavy-snow-wallop-swaths-of-us.html

[33] National Park Service. 2022. Mount rainier. https://www.nps.gov/mora/index.htm

[34] National Park Service. 2025. Mount rainier annual snowfall totals. https://www.nps.gov/mora/planyourvisit/annual-snowfall-totals.htm

[35] National Park Service. 2025. Mount rainier frequently asked questions. https://www.nps.gov/mora/faqs.htm

[36] National Weather Service. 2025. Measuring snow. https://www.weather.gov/dvn/snowmeasure

[37] Hoong Kee Ng, Hon Wai Leong, and Ngai Lam Ho. 2004. Eicient algorithm for path-based range query in spatial databases. In IEEE

International Database Engineering and Applications Symposium (IDEAS). 334ś343.

[38] Niall McCarthy. 2021. Exploring the red planet is a costly undertaking. https://www.statista.com/chart/24232/life-cycle-costs-of-mars-

missions/

[39] Sebastian Pütz, Thomas Wiemann, Jochen Sprickerhof, and Joachim Hertzberg. 2016. 3D navigation mesh generation for path planning

in uneven terrain. Symposium on Intelligent Autonomous Vehicles (IAV) 49, 15 (2016), 212ś217.

[40] Russell LaDuca. 2020. What would happen to me if I was buried under snow? https://qr.ae/prt6zQ

ACM Trans. Datab. Syst.

https://www.google.com/maps
https://gunnisoncrestedbutte.com/visit/places-to-go/parks-and-outdoors/gunnison-national-forest/
https://www.britannica.com/place/Laramie-Mountains
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://www.nasa.gov/missions/nasas-maven-observes-martian-light-show-caused-by-major-solar-storm/
https://www.nasa.gov/missions/nasas-maven-observes-martian-light-show-caused-by-major-solar-storm/
https://en.wikipedia.org/wiki/Preferred_walking_speed
https://www.mountaineers.org/activities/routes-places/robinson-mountain
https://www.freshoffthegrid.com/winter-hiking-101-hiking-in-snow/
https://www.freshoffthegrid.com/winter-hiking-101-hiking-in-snow/
https://www.cnbc.com/2022/12/26/death-toll-rises-to-at-least-55-as-freezing-temperatures-and-heavy-snow-wallop-swaths-of-us.html
https://www.cnbc.com/2022/12/26/death-toll-rises-to-at-least-55-as-freezing-temperatures-and-heavy-snow-wallop-swaths-of-us.html
https://www.nps.gov/mora/index.htm
https://www.nps.gov/mora/planyourvisit/annual-snowfall-totals.htm
https://www.nps.gov/mora/faqs.htm
https://www.weather.gov/dvn/snowmeasure
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://www.statista.com/chart/24232/life-cycle-costs-of-mars-missions/
https://qr.ae/prt6zQ

40 • Y. Yan and R. Chi-Wing Wong

[41] Cyrus Shahabi, Lu-An Tang, and Songhua Xing. 2008. Indexing land surface for eicient knn query. In International Conference on Very

Large Data Bases (VLDB), Vol. 1. 1020ś1031.

[42] Barak Sober, Robert Ravier, and Ingrid Daubechies. 2020. Approximating the riemannian metric from point clouds via manifold moving

least squares. arXiv preprint arXiv:2007.09885 (2020).

[43] Spatial. 2022. LiDAR scanning with spatial’s ios app. https://support.spatial.io/hc/en-us/articles/360057387631-LiDAR-Scanning-with-

Spatial-s-iOS-App

[44] The Conversation. 2025. How is snowfall measured? Ameteorologist explains how volunteers tally up winter storms. https://theconversation.

com/how-is-snowfall-measured-a-meteorologist-explains-how-volunteers-tally-up-winter-storms-175628

[45] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, and David M. Mount. 2017. Distance oracle on terrain surface. In ACM

International Conference on Management of Data (SIGMOD). 1211ś1226.

[46] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, David M Mount, and Hanan Samet. 2022. Proximity queries on terrain

surface. ACM Transactions on Database Systems (TODS) (2022).

[47] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, David M Mount, and Hanan Samet. 2024. On eicient shortest path

computation on terrain surface: a direction-oriented approach. IEEE Transactions on Knowledge & Data Engineering (TKDE) 1 (2024),

1ś14.

[48] Shi-Qing Xin and Guo-Jin Wang. 2009. Improving chen and han’s algorithm on the discrete geodesic problem. ACM Transactions on

Graphics (TOG) 28, 4 (2009), 1ś8.

[49] Songhua Xing, Cyrus Shahabi, and Bei Pan. 2009. Continuous monitoring of nearest neighbors on land surface. In International

Conference on Very Large Data Bases (VLDB), Vol. 2. 1114ś1125.

[50] Da Yan, Zhou Zhao, and Wilfred Ng. 2012. Monochromatic and bichromatic reverse nearest neighbor queries on land surfaces. In ACM

International Conference on Information and Knowledge Management (CIKM). 942ś951.

[51] Yinzhao Yan and Raymond Chi-Wing Wong. 2021. Path advisor: a multi-functional campus map tool for shortest path. In International

Conference on Very Large Data Bases (VLDB), Vol. 14. 2683ś2686.

[52] Yinzhao Yan and Raymond Chi-Wing Wong. 2024. Eicient shortest path queries on 3d weighted terrain surfaces for moving objects. In

IEEE International Conference on Mobile Data Management (MDM). 11ś20.

[53] Yinzhao Yan and Raymond Chi-Wing Wong. 2024. Proximity queries on point clouds using rapid construction path oracle. In ACM

International Conference on Management of Data (SIGMOD), Vol. 2. 1ś26.

[54] Yinzhao Yan and Raymond Chi-Wing Wong. 2025. Eicient path oracles for proximity queries on point clouds (technical report).

https://github.com/yanyinzhao/PointCloudOracleCode/blob/main/TechnicalReport.pdf

[55] Yinzhao Yan and Raymond Chi-WingWong. 2026. Eicient proximity queries on simpliied height maps. In ACM International Conference

on Management of Data (SIGMOD), Vol. 3. 1ś26.

[56] Yinzhao Yan, Raymond Chi-Wing Wong, and Christian S Jensen. 2024. An eiciently updatable path oracle for terrain surfaces. IEEE

Transactions on Knowledge & Data Engineering (TKDE) 37, 2 (2024), 557ś571.

[57] Hongchuan Yu, Jian J Zhang, and Zheng Jiao. 2014. Geodesics on point clouds. Mathematical Problems in Engineering (MPE) (2014).

[58] Zichao Qi, Yanghua Xiao, Bin Shao, and Haixun Wang. 2013. Toward a distance oracle for billion-node graphs. International Conference

on Very Large Data Bases (VLDB) 7, 1 (2013), 61ś72.

[59] Yoones Rezaei and Stephen Lee. 2023. sat2pc: Generating building roof’s point cloud from a single 2d satellite images. In ACM/IEEE

International Conference on Cyber-Physical Systems (ICCPS). 221ś230.

[60] Jagan Sankaranarayanan and Hanan Samet. 2009. Distance oracles for spatial networks. In IEEE International Conference on Data

Engineering (ICDE). 652ś663.

[61] Jagan Sankaranarayanan, Hanan Samet, and Houman Alborzi. 2009. Path oracles for spatial networks. International Conference on Very

Large Data Bases (VLDB) 2, 1 (2009), 1210ś1221.

[62] Farhan Tauheed, Laurynas Biveinis, Thomas Heinis, Felix Schurmann, Henry Markram, and Anastasia Ailamaki. 2012. Accelerating

range queries for brain simulations. In IEEE International Conference on Data Engineering (ICDE). 941ś952.

[63] Victor Junqiu Wei, Raymond Chi-Wing Wong, and Cheng Long. 2020. Architecture-intact oracle for fastest path and time queries on

dynamic spatial networks. In ACM International Conference on Management of Data (SIGMOD). 1841ś1856.

Received 28 July 2024; revised 21 July 2025; accepted 23 September 2025

ACM Trans. Datab. Syst.

https://support.spatial.io/hc/en-us/articles/360057387631-LiDAR-Scanning-with-Spatial-s-iOS-App
https://support.spatial.io/hc/en-us/articles/360057387631-LiDAR-Scanning-with-Spatial-s-iOS-App
https://theconversation.com/how-is-snowfall-measured-a-meteorologist-explains-how-volunteers-tally-up-winter-storms-175628
https://theconversation.com/how-is-snowfall-measured-a-meteorologist-explains-how-volunteers-tally-up-winter-storms-175628
https://github.com/yanyinzhao/PointCloudOracleCode/blob/main/TechnicalReport.pdf

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Our First-Type Oracle
	1.4 Our Second-Type Oracle
	1.5 Contributions and Organization

	2 Problem Definition
	2.1 Notation and Definitions
	2.2 Problem

	3 Related Work
	3.1 On-the-fly Algorithms
	3.2 Oracles for the Shortest Path Query
	3.3 Oracles for Other Proximity Queries
	3.4 Comparisons

	4 RC-Oracle and Its Adaptations
	4.1 Overview of RC-Oracle and Its Adaptations
	4.2 RC-Oracle and Its Proximity Query Algorithms
	4.3 RC-Oracle-A2P-SmCon and Its Proximity Query Algorithms
	4.4 RC-Oracle-A2P-SmQue and Its Proximity Query Algorithms
	4.5 RC-Oracle-A2A and Its Proximity Query Algorithms
	4.6 Adaptation to AR2P and AR2AR Queries on TINs

	5 TI-Oracle and its Adaptations
	5.1 Overview of TI-Oracle and Its Adaptations
	5.2 TI-Oracle and Its Proximity Query Algorithms
	5.3 TI-Oracle-A2A and Its Proximity Query Algorithms

	6 Empirical Studies
	6.1 Experimental Setup
	6.2 Experimental Results for TINs
	6.3 Experimental Results for Point Clouds

	7 Conclusion
	References

